Riemann–Liouville fractional integral type exponential sampling Kantorovich series

dc.contributor.authorKursun, Sadettin
dc.contributor.authorAral, Ali
dc.contributor.authorAcar, Tuncer
dc.date.accessioned2025-01-21T16:28:30Z
dc.date.available2025-01-21T16:28:30Z
dc.date.issued2024
dc.departmentKırıkkale Üniversitesi
dc.description.abstractIn the present paper, we introduce a new family of sampling Kantorovich type operators using fractional-type integrals. We study approximation properties of newly constructed operators and give a rate of convergence via a suitable modulus of continuity. Furthermore, we obtain an asymptotic formula considering locally regular functions. Secondly, we deal with logarithmic weighted spaces. By using a certain weighted logarithmic modulus of continuity, we obtain a rate of convergence and give a quantitative form of Voronovskaja-type theorem considering the remainder of Mellin–Taylor's formula. Moreover, we give a relation between generalized exponential sampling operators and newly constructed operators. Finally, we present some examples of kernels satisfying the obtained results. The results are examined by illustrative numerical table and graphical representations. © 2023 Elsevier Ltd
dc.identifier.doi10.1016/j.eswa.2023.122350
dc.identifier.issn0957-4174
dc.identifier.scopus2-s2.0-85175575883
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org/10.1016/j.eswa.2023.122350
dc.identifier.urihttps://hdl.handle.net/20.500.12587/23558
dc.identifier.volume238
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherElsevier Ltd
dc.relation.ispartofExpert Systems with Applications
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_20241229
dc.subjectExponential sampling series; Fractional integrals; Logarithmic weighted space of functions; Modulus of continuity; Rate of convergence; Voronovskaja-type theorem
dc.titleRiemann–Liouville fractional integral type exponential sampling Kantorovich series
dc.typeArticle

Dosyalar