1,5 kw gücünde organik rankine çevriminin parametrik, tasarımı, termodinamik analizi, prototip imalatı ve testi
Yükleniyor...
Dosyalar
Tarih
2016
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Kırıkkale Üniversitesi
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
Bu tez çalışmasında, reküparatörlü bir ORC (Organic Rankine Cycle – Organik Rankine Çevrimi) sisteminin tasarımı, termodinamik analizleri prototip sistem imalatı ve testleri gerçekleştirildi. Bu amaçla; türbindeki net güç çıkışı 1,5 kW olan bir ORC sistemi; farklı kaynak sıcaklıkları için (sıcak kaynak: 90°C, 100°C ve 110°C ve soğuk kuyu: 15°C) tasarlandı. Termodinamik çevrim analizleri Cycle- Tempo v. 5.1 ve Refprop v. 9.0 programları kullanılarak farklı organik akışkanlar (R236ea, R245ca, R245fa ve R365mfc) ve farklı türbin izentropik verimleri (%60, %70, %80) için yapıldı. Ayrıca aşırı kızdırma sıcaklığının (5°C, 10°C ve 15°C) etkisi de incelendi. Analizler sonucunda en yüksek ORC verimi R365mfc akışkanında elde edildi. Türbin izentropik veriminin artması ORC verimini arttırırken, aşırı kızdırma sıcaklığı ORC verimini azalttı. Isı kaynağı sıcaklığı arttıkça, ORC veriminin arttığı görüldü. Tüm analizlerden elde edilen en yüksek ORC verimi (110°C ısı kaynağı sıcaklığı, %80 izentropik verim, 5°C aşırı kızdırma sıcaklığı ve R365mfc akışkanı için) %10,4 olarak hesaplandı. En düşük ORC verimi ise (90°C ısı kaynağı sıcaklığı, %60 izentropik verim, 15°C aşırı kızdırma sıcaklığı ve R236ea akışkanı için) %4,7 olarak hesaplandı. Ardından, prototip test sistemi kuruldu ve testler yapıldı. Test sisteminde kolay temin edilebilirliği nedeniyle çevrim akışkanı olarak R245fa kullanıldı. Tüm test sisteminin tasarımı ve analizleri; piyasadan hazır raf ürünleri (ısı eşanjörü, pompa, türbin, vb.) kullanılarak prototip sistemin kurulması dikkate alınarak yapıldı. Testler yapıldı ve analiz ve test sonuçlarının uyumluluğu karşılaştırıldı.
In this thesis, a recuperated ORC (Organic Rankine Cycle) system was designed, its thermodynamics and thermal-flow analysis was performed, and furthermore, a complete prototype system was manufactured and tested. For this purpose; an ORC system at a net turbine power output of 1.5 kW was designed for different source temperature (hot source at 90°C, 100°C and 110°C, and cold sink at 15°C). Thermodynamic cycle analysis was performed for various organic fluids (R236ea, R245ca, R245fa, and R365mfc) and various turbine isentropic efficiencies (60%, 70%, and 80%) by using Cycle-Tempo v. 5.1 and Refprop v. 9.0 software. In addition, effects of various superheating temperatures (5°C, 10°C and 15°C) were also investigated. Analyses results show that R365mfc fluid yields the highest ORC efficiency. ORC efficiency increases with turbine isentropic efficiency while decreases with superheating temperature. The increasing heat source temperature also yields higher ORC efficiency. From all analyses, the highest ORC efficiency is calculated as 10.4% (for 110°C heat source temperature, 80% isentropic efficiency, 5°C superheating temperature and R365mfc fluid). The lowest ORC efficiency is 4.7% (90°C heat source temperature, 60% isentropic efficiency, 15°C superheating temperature and R236ea fluid). Then the prototype test system was set up and tests were performed. R245fa was used as the cycle fluid in the prototype test system due ease of availability. All design and analysis steps were performed by considering a prototype system to be manufactured by using ready shelf products in the market (heat exchangers, pumps, turbines, etc.). The prototype system was installed and tested. Then, compatibility of analysis and test results was compared.
In this thesis, a recuperated ORC (Organic Rankine Cycle) system was designed, its thermodynamics and thermal-flow analysis was performed, and furthermore, a complete prototype system was manufactured and tested. For this purpose; an ORC system at a net turbine power output of 1.5 kW was designed for different source temperature (hot source at 90°C, 100°C and 110°C, and cold sink at 15°C). Thermodynamic cycle analysis was performed for various organic fluids (R236ea, R245ca, R245fa, and R365mfc) and various turbine isentropic efficiencies (60%, 70%, and 80%) by using Cycle-Tempo v. 5.1 and Refprop v. 9.0 software. In addition, effects of various superheating temperatures (5°C, 10°C and 15°C) were also investigated. Analyses results show that R365mfc fluid yields the highest ORC efficiency. ORC efficiency increases with turbine isentropic efficiency while decreases with superheating temperature. The increasing heat source temperature also yields higher ORC efficiency. From all analyses, the highest ORC efficiency is calculated as 10.4% (for 110°C heat source temperature, 80% isentropic efficiency, 5°C superheating temperature and R365mfc fluid). The lowest ORC efficiency is 4.7% (90°C heat source temperature, 60% isentropic efficiency, 15°C superheating temperature and R236ea fluid). Then the prototype test system was set up and tests were performed. R245fa was used as the cycle fluid in the prototype test system due ease of availability. All design and analysis steps were performed by considering a prototype system to be manufactured by using ready shelf products in the market (heat exchangers, pumps, turbines, etc.). The prototype system was installed and tested. Then, compatibility of analysis and test results was compared.
Açıklama
Anahtar Kelimeler
Enerji, Energy