p-k Srivasatava hipergeometrik fonksiyonlari
[ X ]
Tarih
2024
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Kırıkkale Üniversitesi
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
Bu tez 6 bölümden oluşmaktadır. Tezin birinci bölümü giriş için ayrılmıştır. İkinci bölümde tezde kullanılacak temel tanım ve teoremler verilmiştir. Üçüncü bölümde Srivastava ve k- Srivastava hipergeometrik fonksiyonlarının tanımları ve sağladığı özellikler verilmiştir. Tezin dördüncü ve beşinci bölümü orjinal olup dördüncü bölümde p-k Srivastava hipergeometrik fonksiyonları tanımlanmış ve önemli özellikleri verilmiştir. Beşinci bölümde ise p-k Srivastava hipergeometrik fonksiyonları için bazı yineleme formülleri verilmiştir. Altıncı bölüm tartışma ve sonuç için ayrılmıştır.
This thesis consists of six chapters. The first chapter is dedicated to the introduction. The second chapter presents the fundamental definitions and theorems used in the thesis. In the third chapter, definitions and properties of the Srivastava and k- Srivastava hypergeometric functions are provided. The fourth and fifth chapters are original contributions: the fourth chapter defines the p-k Srivastava hypergeometric functions and presents their important properties. The fifth chapter provides some recurrence formulas for the p-k Srivastava hypergeometric functions. The sixth chapter is reserved for discussion and conclusions.
This thesis consists of six chapters. The first chapter is dedicated to the introduction. The second chapter presents the fundamental definitions and theorems used in the thesis. In the third chapter, definitions and properties of the Srivastava and k- Srivastava hypergeometric functions are provided. The fourth and fifth chapters are original contributions: the fourth chapter defines the p-k Srivastava hypergeometric functions and presents their important properties. The fifth chapter provides some recurrence formulas for the p-k Srivastava hypergeometric functions. The sixth chapter is reserved for discussion and conclusions.
Açıklama
Fen Bilimleri Enstitüsü, Matematik Ana Bilim Dalı
Anahtar Kelimeler
Matematik, Mathematics