Genetik algoritma yaklaşımıyla Kumaraswamy dağılımı parametrelerinin sıralı küme örneklemesi ile tahmin edilmesi

Yükleniyor...
Küçük Resim

Tarih

2018

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Kırıkkale Üniversitesi

Erişim Hakkı

info:eu-repo/semantics/openAccess

Özet

Bu tez çalışmasında, Kumaraswamy dağılımının parametrelerinin tahmin edilmesi için en çok olabilirlik yönteminde genetik algortimanın kullanılması araştırlmıştır. Ayrıca basit rasgele örneklemeye alternatif olarak sıralı küme örneklemesi de incelenmiştir. Genetik algoritma, Kumaraswamy dağılımı parametrelerinin pozitif olma koşulunun hesaba katılması ve olabilirlik fonksiyonunun türev bilgisine ihtiyaç duymaması açısından kolaylık sağlamıştır. Bunun yanında sıralı küme örneklemesi tahmin edicileri basit rasgele örneklemeye kıyasla daha iyi sonuçlar vermiştir. Simülasyon çalışmasındaki hesaplamalar için R yazılımı kullanılmıştır.
In this thesis, the estimation of parameters of the Kumaraswamy distribution has been investigated by using maximum likelihood method with genetic algorithm. In addition, ranked set sampling is also investigated as an alternative for simple random sampling. Genetic algorithm has two benefits for solving this problem. First benefit is that by using GA the pozitivity constraints for the parameters of the Kumaraswamy distribution are automatically satisfied. Second in GA use of derivatives is not needed. On the other hand ranked set sampling estimators give better results in comparison with simple random sampling estimators. R software was prefered for calculations in the simulation study.

Açıklama

Anahtar Kelimeler

İstatistik, Statistics, , , , , ,

Kaynak

WoS Q Değeri

Scopus Q Değeri

Cilt

Sayı

Künye