On level hypersurfaces of the complete lift of a submersion

dc.contributor.authorYıldırım, Mehmet
dc.date.accessioned2020-06-25T17:48:42Z
dc.date.available2020-06-25T17:48:42Z
dc.date.issued2009
dc.departmentKırıkkale Üniversitesi
dc.description.abstractSuppose that (M, G) is a Riemannian manifold and f : M -> R is a submersion. Then the complete lift of f, f(c) : TM -> R defined by f(c) = partial derivative f/partial derivative x(i) y(i) is also a submersion. This interesting case leads us to the investigation of the level hypersurfaces of f(c) as a submanifold of tangent bundle TM. In addition, we prolonge the level hypersurfaces of f to (N) over bar = (f(c))(-1)(0). Also, under the condition (del) over capf is a constant, we show that (N) over bar has a light like structure with induced metric (G) over bar from G(c).en_US
dc.identifier.citationYıldırım, M. (2009). On level hypersurfaces of the complete lift of a submersion. Analele Stiintifice ale Universitatii Ovidius Constanta, Seria Matematica. 17(2), 231–252.en_US
dc.identifier.endpage252en_US
dc.identifier.issn1224-1784
dc.identifier.issue2en_US
dc.identifier.startpage231en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12587/4534
dc.identifier.volume17en_US
dc.identifier.wosWOS:000272198000021
dc.identifier.wosqualityN/A
dc.indekslendigikaynakWeb of Science
dc.language.isoen
dc.publisherOvidius Univ Pressen_US
dc.relation.ispartofAnalele Stiintifice Ale Universitatii Ovidius Constanta-Seria Matematica
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectLevel surfacesen_US
dc.subjecttangent bundleen_US
dc.subjectprolongationen_US
dc.subjectcomplete liften_US
dc.titleOn level hypersurfaces of the complete lift of a submersionen_US
dc.typeArticle

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
On level hypersurfaces of the complete lift of a submersion.pdf
Boyut:
215.03 KB
Biçim:
Adobe Portable Document Format
Açıklama:
Tam Metin/Full Text