ON THE EXPLICIT CHARACTERIZATION OF CURVES ON A (n - 1)-SPHERE IN Sn

dc.contributor.authorCamci, C.
dc.contributor.authorKula, L.
dc.contributor.authorIlarslan, K.
dc.contributor.authorHacisalihoglu, H. H.
dc.date.accessioned2025-01-21T16:43:14Z
dc.date.available2025-01-21T16:43:14Z
dc.date.issued2013
dc.departmentKırıkkale Üniversitesi
dc.description.abstractIn (n+1)-dimensional Euclidean space E-n+(1), harmonic curvatures and focal curvatures of a non-degenerate curve were defined by Ozdamar and Hacisalihoglu in [7] and by Uribe-Vargas in [9], respectively. In this paper, we investigate the relations between the harmonic curvatures of a non-degenerate curve and the focal curvatures of tangent indicatrix of the curve. Also we give the relationship between the Frenet apparatus (vectors and the curvature functions) of a curve alpha in E-n (+1) and the Frenet apparatus of tangent indicatrix alpha(T) of the curve alpha. In the main theorem of the paper, we give a characterization for a curve to be a (n-1)-spherical curve in S-n by using focal curvatures of the curve. Furtermore we give that harmonic curvature of the curve is focal curvature of the tangent indicatrix.
dc.identifier.endpage69
dc.identifier.issn1307-5624
dc.identifier.issue2
dc.identifier.startpage63
dc.identifier.urihttps://hdl.handle.net/20.500.12587/25208
dc.identifier.volume6
dc.identifier.wosWOS:000439105700009
dc.identifier.wosqualityN/A
dc.indekslendigikaynakWeb of Science
dc.language.isoen
dc.publisherInt Electronic Journal Geometry
dc.relation.ispartofInternational Electronic Journal of Geometry
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_20241229
dc.subjectHarmonic curvature; focal curvature; spherical curve; generalized helix; tangent indicatrix
dc.titleON THE EXPLICIT CHARACTERIZATION OF CURVES ON A (n - 1)-SPHERE IN Sn
dc.typeArticle

Dosyalar