Plasma enhanced chemical vapor deposition of low loss as-grown germanosilicate layers for optical waveguides
dc.contributor.author | Ay, Feridun | |
dc.contributor.author | Agan, Sedat | |
dc.contributor.author | Aydinli, Atilla | |
dc.date.accessioned | 2020-06-25T15:13:21Z | |
dc.date.available | 2020-06-25T15:13:21Z | |
dc.date.issued | 2004 | |
dc.department | Kırıkkale Üniversitesi | |
dc.description | SPIE - The International Society for Optical Engineering | |
dc.description | Integrated Optics and Photonic Integrated Circuits -- 27 April 2004 through 29 April 2004 -- Strasbourg -- 64220 | |
dc.description.abstract | We report on systematic growth and characterization of low-loss germanosilicate layers for use in optical waveguides. Plasma enhanced chemical vapor deposition (PECVD) technique was used to grow the films using silane, germane and nitrous oxide as precursor gases. Chemical composition was monitored by Fourier transform infrared (FTIR) spectroscopy. N-H bond concentration of the films decreased from 0.43 ×1022 cm -3 down to below 0.06x 1022 cm-3, by a factor of seven as the GeH4 flow rate increased from 0 to 70 seem. A simultaneous decrease of O-H related bonds was also observed by a factor of 10 in the same germane flow range. The measured TE loss rates at ?=632.8 nm were found to increase from are 0.20 ± 0.02 to 6.46 ± 0.04 dB/cm as the germane flow rate increased from 5 to 50 seem, respectively. In contrast, the propagation loss values for TE polarization at ?-1550 nm were found to decrease from 0.32 ± 0.03 down to 0.14 ± 0.06 dB/cm for the same samples leading to the lowest values reported so far in the literature, eliminating the need for high temperature annealing as is usually done for these materials to be used in waveguide devices. | en_US |
dc.identifier.citation | closedAccess | en_US |
dc.identifier.doi | 10.1117/12.546080 | |
dc.identifier.endpage | 517 | en_US |
dc.identifier.issn | 0277786X | |
dc.identifier.scopus | 2-s2.0-12444302232 | |
dc.identifier.scopusquality | Q4 | |
dc.identifier.startpage | 511 | en_US |
dc.identifier.uri | https://doi.org/10.1117/12.546080 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12587/1751 | |
dc.identifier.volume | 5451 | en_US |
dc.indekslendigikaynak | Scopus | |
dc.language.iso | en | |
dc.relation.ispartof | Proceedings of SPIE - The International Society for Optical Engineering | |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | FTIR | en_US |
dc.subject | Germanosilicate | en_US |
dc.subject | Optical loss | en_US |
dc.subject | Optical waveguides | en_US |
dc.subject | PECVD | en_US |
dc.subject | Prism coupling | en_US |
dc.title | Plasma enhanced chemical vapor deposition of low loss as-grown germanosilicate layers for optical waveguides | en_US |
dc.type | Conference Object |