Finite-size scaling relations of the four-dimensional Ising model on the Creutz cellular automaton

dc.contributor.authorMerdan, Z.
dc.contributor.authorGüzelsoy, E.
dc.date.accessioned2020-06-25T15:14:42Z
dc.date.available2020-06-25T15:14:42Z
dc.date.issued2011
dc.departmentKırıkkale Üniversitesi
dc.description.abstractThe four-dimensional Ising model is simulated on the Creutz cellular automaton using the finite-size lattices with the linear dimension 4 ? L ? 8. The temperature variations and the finite-size scaling plots of the specific heat and the Binder parameter verify the theoretically predicted expression near the infinite lattice critical temperature for the 7, 14, and 21 independent simulations. The approximate values for the critical temperature of the infinite lattice, Tc(?) = 6.6965(35), 6.6961(30), 6.6960(12), 6.6800(3), 6.6801(2), 6.6802(1) and 6.6925(22) (without logarithmic factor), 6.6921(22) (without logarithmic factor), 6.6909(2) (without logarithmic factor), 6.6822(13) (with logarithmic factor), 6.6819(11) (with logarithmic factor), 6.6808(8) (with logarithmic factor) are obtained from the intersection points of specific heat curves, the Binder parameter curves and the straight line fit of specific heat maxima for the 7, 14, and 21 independent simulations, respectively. As the number of independent simulations increases, the obtained results, 6.6802(1) and 6.6808(8), are in very good agreement with the series expansion results of Tc(?) = 6.6817(15), 6.6802(2), the dynamic Monte Carlo result of Tc(?) = 6.6803(1), the cluster Monte Carlo result of Tc(?) = 6.680(1) and the Monte Carlo using Metropolis and Wolff-cluster algorithm of Tc(?) = 6.6802632 ± 5-10-5 The average values obtained for the critical exponent of the specific heat are calculated as ? =-0.0402(15),-0.0393(12),-0.0391(11) for the 7, 14, and 21 independent simulations, respectively. As the number of independent simulations increases, the obtained result, ? =-0.0391(11), is agreement with the series expansions results of ? =-0.12 ± 0.03 and the Monte Carlo using Metropolis and Wolff-cluster algorithm of a > 0+0.04. However, ? =-0.0391(11) isn't consistent with the renormalization group prediction of ? = 0. © Z. Merdan and E. Güzelsoy, 2011.en_US
dc.identifier.citationclosedAccessen_US
dc.identifier.endpage597en_US
dc.identifier.issn01326414
dc.identifier.issue6en_US
dc.identifier.scopus2-s2.0-79956101899
dc.identifier.scopusqualityQ4
dc.identifier.startpage591en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12587/2175
dc.identifier.volume37en_US
dc.indekslendigikaynakScopus
dc.language.isoen
dc.relation.ispartofFizika Nizkikh Temperatur (Kharkov)
dc.relation.publicationcategoryMakale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectCellular automataen_US
dc.subjectCritical exponentsen_US
dc.subjectFinite-size scaling.en_US
dc.subjectIsing modelen_US
dc.titleFinite-size scaling relations of the four-dimensional Ising model on the Creutz cellular automatonen_US
dc.typeArticle

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
[ X ]
İsim:
PhNT_2011_37_6_6.pdf
Boyut:
232.68 KB
Biçim:
Adobe Portable Document Format
Açıklama:
Tam metin/Full text