Polihidroksi etilmetakrilat kökenli yapay damarların hazırlanması ve biyo-uyumluluk özelliklerinin arttırılması ve karakterizasyonu
Yükleniyor...
Dosyalar
Tarih
2006
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Kırıkkale Üniversitesi
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
Bu tez çalısmasının baslıca amacı, biyolojik olarak uyumlu olan poli(hidroksietil metakrilat), pHEMA hidrojel kökenli, dolasım sisteminde kullanılabilir, yapay bir damar gelistirmektir. Bu amaç doğrultusunda, farklı miktarlarda albumin (AL) ve heparin (HEP) tutuklanmıs pHEMA-AL-HEP tüpleri hazırlandı. Çalısmanın birinci asamasında uygun çap ve boyutlara sahip ve farklı miktarlarda insan serum albumuni (HSA) içeren pHEMA-AL tüpleri 6 mm iç çapta yapay damar olarak fotopolimerizasyon yöntemi ile azoizobutironitril (AIBN) baslatıcısı varlığında sentezlendi. Albumin içeren pHEMA-AL yapıların kan uyumluluğunu artırmak ve yüzeyinde trombus olusumunu engellemek için karbodiimid ile aktivite edildi ve yüzeye heparin kovalent olarak bağlandı. Heparin bağlanma miktarları farklı albumin ve heparin baslangıç konsantrasyonlarında ayrıntılı olarak incelendi. pHEMA'nın biyolojik ve kan uyumluluğunu artırmak için sentez sırasında insan serum albumini matriks içi tutuklama yöntemi ile yerlestirildi ve sonrasında yüzey modifikasyonu ile heparin, pHEMA-AL yapının yüzeyine kovalent olarak bağlandı. Yapay damar olarak kullanılması planlanan yeni gelistirilen biyomateryalin, kan uyumluluk testleri kanda hemolitik aktivite, protrombin zamanı, aktive tromboplastin zamanı, kan hücrelerinin kaybı gibi parametrelerle incelendi. Ayrıca rutin analizler dısında, gelistirilen biyomateryalin, yüzey özellikleri SEM, yüzey temas açıları ve mekanik özellikleri ve kan serum proteinlerinin adsorpsiyonları detaylı olarak çalısıldı. Son olarak, optimize edilmis kosullarda üretilen pHEMA-AL-HEP polimerik yapay damar modeli sürekli sistemde 72 saat süre ile dayanıklılık testleri yapıldı.
The main purpose of this study is to develop an artificial biocompatible vessel based on poly(hydroxyethyl methacrylate) (pHEMA) hydrogel which can be used in vascular system. In the direction of this purpose, different amounts of heparin (HEP) and albumin (AL) immobilized pHEMA-AL-HEP tubes were prepared. In the first stage of this study, in order to increase biocompatibility of pHEMA, human serum albumin (HSA) was placed with intramatrix entrapment method in pHEMA structure, during polymerization. The pHEMA-AL tubes having 6 mm internal diameter were synthesized as an artificial vessel with the photopolymerization method, in the presence of azoisobutyronitrile (AIBN) initiator. In order to increase blood compatibility of pHEMA-AL structures, and to prevent formation of thrombus on the surface, polymer was activated with 1.1?-carbonyldiimidazole (CDI) and heparin was covalently immobilised on the surface. Amounts of immobilised heparin were studied in detail at the different initial concentrations of albumin and heparin. Blood compatability tests of the newly developed biomaterial which was planned to be used as an artificial vessel, were examined with various parameters as hemolytic activity, prothrombin time, activated thromboplastin time, loss of blood cells in blood. In addition to routine analysis, surface properties of the biomaterial were studied with SEM, contact angles and surface energies, mechanical properties and adsorptions of blood serum proteins. Finally, the model of pHEMA-AL-HEP polymeric artificial vessels produced under optimised conditions, were tested for 72 h in continuous system.
The main purpose of this study is to develop an artificial biocompatible vessel based on poly(hydroxyethyl methacrylate) (pHEMA) hydrogel which can be used in vascular system. In the direction of this purpose, different amounts of heparin (HEP) and albumin (AL) immobilized pHEMA-AL-HEP tubes were prepared. In the first stage of this study, in order to increase biocompatibility of pHEMA, human serum albumin (HSA) was placed with intramatrix entrapment method in pHEMA structure, during polymerization. The pHEMA-AL tubes having 6 mm internal diameter were synthesized as an artificial vessel with the photopolymerization method, in the presence of azoisobutyronitrile (AIBN) initiator. In order to increase blood compatibility of pHEMA-AL structures, and to prevent formation of thrombus on the surface, polymer was activated with 1.1?-carbonyldiimidazole (CDI) and heparin was covalently immobilised on the surface. Amounts of immobilised heparin were studied in detail at the different initial concentrations of albumin and heparin. Blood compatability tests of the newly developed biomaterial which was planned to be used as an artificial vessel, were examined with various parameters as hemolytic activity, prothrombin time, activated thromboplastin time, loss of blood cells in blood. In addition to routine analysis, surface properties of the biomaterial were studied with SEM, contact angles and surface energies, mechanical properties and adsorptions of blood serum proteins. Finally, the model of pHEMA-AL-HEP polymeric artificial vessels produced under optimised conditions, were tested for 72 h in continuous system.
Açıklama
Anahtar Kelimeler
Biyoloji, Biology