Function approximation by singular integral and applications

dc.contributor.authorAral, Ali
dc.contributor.authorErbay, Hasan
dc.date.accessioned2020-06-25T15:13:28Z
dc.date.available2020-06-25T15:13:28Z
dc.date.issued2005
dc.departmentKırıkkale Üniversitesi
dc.description.abstractFunction approximation by convolution type singular integrals has important applications in differential and integral equations. In this paper we study general singular operators. We first develop the test conditions for the convergence of convolution type singular integral operators to approximated function in the exponential weighted space. Then we propose, for estimating the rate of approximation, in new modulus of smoothness and examine the main properties of this modulus of smoothness. We also give some applications for the Gauss-Weierstrass integral.en_US
dc.identifier.citationclosedAccessen_US
dc.identifier.endpage485en_US
dc.identifier.issn11092769
dc.identifier.issue4en_US
dc.identifier.scopus2-s2.0-29944436446
dc.identifier.scopusqualityQ2
dc.identifier.startpage480en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12587/1814
dc.identifier.volume4en_US
dc.indekslendigikaynakScopus
dc.language.isoen
dc.relation.ispartofWSEAS Transactions on Mathematics
dc.relation.publicationcategoryMakale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectConvolution operatorsen_US
dc.subjectThe order of approximationen_US
dc.subjectThe weighted modulus of continuityen_US
dc.titleFunction approximation by singular integral and applicationsen_US
dc.typeArticle

Dosyalar