Polipropilen Lifli Betonların Yüksek Sıcaklık Sonrası Basınç Dayanımlarının Yapay Sinir Ağları ile Tahmini
[ X ]
Tarih
2009
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Kırıkkale Üniversitesi
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
Beton yüksek sıcaklık etkisinde kaldığında önemli ölçüde hasara uğrar. Bu durum istenilmeyen yapısal kusurlara neden olabilir. Polipropilen liflerin ilavesi bu hasarın azaltılmasında kullanılan yöntemlerden biridir. Bu çalısmada lif katkısız, 0.9, 1.35 ve 1.8 kg/m3 polipropilen lif katkılı beton numuneler üretilmis, numuneler laboratuar ortamında olgunlastırılmıs, 28. günün sonunda tüm numuneler 20, 400, 600 ve 800 ºC sıcaklık etkisinde bırakılmıstır. Yüksek sıcaklık etkisinde kalan numunelerin basınç dayanımları test edilmistir. Deneysel olarak bulunan test sonuçlarının yapay sinir ağları (YSA) kullanılarak bulunması amaçlanmıstır. YSA yaklasımı ile deneysel olarak elde edilmis veriler karsılastırıldığında değerlerin birbirine en çok % 3.5 en az % 0.0 hata ile yakın olduğu görülmüstür.
Concrete, when under the impact of high temperatures, is considerably damaged. This may result in undesirable structural failures. One of the ways to reduce this damage is to incorporate polypropylene fibers. In this study, first, concrete samples- both without fibers, and with polypropylene fibers in three different amounts - 0.9, 1.35, 1.8 kg/m3- were produced, and then, these samples were matured in laboratory conditions, and all samples were exposed to high temperatures of 20, 400, 600, and 800 ºC respectively at the end of the 28th day. The compressive strengths of the samples exposed to higher temperatures were tested. It was aimed to obtain the same laboratory test results by using Neural Network. When the data from the laboratory testing and from the Neural Network applications were compared, it was found that the values were very identical. When the data obtained empirically through the ANN approach were compared, it was noted that the values were close to each other with a margin of error of 3.5 % (maximum) and 0 % 0.0 (minimum).
Concrete, when under the impact of high temperatures, is considerably damaged. This may result in undesirable structural failures. One of the ways to reduce this damage is to incorporate polypropylene fibers. In this study, first, concrete samples- both without fibers, and with polypropylene fibers in three different amounts - 0.9, 1.35, 1.8 kg/m3- were produced, and then, these samples were matured in laboratory conditions, and all samples were exposed to high temperatures of 20, 400, 600, and 800 ºC respectively at the end of the 28th day. The compressive strengths of the samples exposed to higher temperatures were tested. It was aimed to obtain the same laboratory test results by using Neural Network. When the data from the laboratory testing and from the Neural Network applications were compared, it was found that the values were very identical. When the data obtained empirically through the ANN approach were compared, it was noted that the values were close to each other with a margin of error of 3.5 % (maximum) and 0 % 0.0 (minimum).
Açıklama
Anahtar Kelimeler
Yüksek Sıcaklık, Polipropilen Lif, Basınç Dayanımı, Yapay Sinir Ağları, High Temperature, Polypropylene Fiber, Compressive Strength, Artificial Neural Network
Kaynak
Uluslararası Mühendislik Araştırma ve Geliştirme Dergisi
WoS Q Değeri
Scopus Q Değeri
Cilt
1
Sayı
2-23