Symmetric (f, g) Bi-Derivations Of Lattices
dc.contributor.author | Jun, Young Bae | |
dc.contributor.author | Asci, Mustafa | |
dc.contributor.author | Kecilioglu, Osman | |
dc.date.accessioned | 2020-06-25T18:13:30Z | |
dc.date.available | 2020-06-25T18:13:30Z | |
dc.date.issued | 2015 | |
dc.department | Kırıkkale Üniversitesi | |
dc.description.abstract | In this paper as a generalization of symmetric bi-derivations and symmetric f bi-derivations of a lattice, we introduce the notion of symmetric (f, g) bi-derivations of a lattice. If the function g is equal to the function f then the symmetric (f, g) bi-derivation is the symmetric f bi-derivation defined in [18]. Also if we choose the functions f and g the identity functions both then the derivation we define coincides with the derivation defined in [9]. | en_US |
dc.identifier.citation | closedAccess | en_US |
dc.identifier.endpage | 189 | en_US |
dc.identifier.issn | 0315-3681 | |
dc.identifier.startpage | 179 | en_US |
dc.identifier.uri | https://hdl.handle.net/20.500.12587/6211 | |
dc.identifier.volume | 96 | en_US |
dc.identifier.wos | WOS:000351784400015 | |
dc.identifier.wosquality | Q4 | |
dc.indekslendigikaynak | Web of Science | |
dc.language.iso | en | |
dc.publisher | Util Math Publ Inc | en_US |
dc.relation.ispartof | Utilitas Mathematica | |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Lattice | en_US |
dc.subject | Derivation | en_US |
dc.subject | Symmetric (f, g) bi-derivation | en_US |
dc.title | Symmetric (f, g) Bi-Derivations Of Lattices | en_US |
dc.type | Article |