Seminal Quality Prediction Using Deep Learning Based on Artificial Intelligence

dc.contributor.authorBenli, Hilal
dc.contributor.authorHaznedar, Bülent
dc.contributor.authorKalınlı, Adem
dc.date.accessioned2025-01-21T14:28:45Z
dc.date.available2025-01-21T14:28:45Z
dc.date.issued2019
dc.description.abstractFertility rates have dramatically decreased inthe last two decades, especially in men. It has been described thatenvironmental factors, as well as life habits, may affect semen quality. Thispaper evaluates the performance of different artificial intelligence (AI)techniques for classifying fertility dataset that includes the semen sampleanalysed according to WHO 2010 criteria and publicly available on UCI datarepository. In this context, deepneural network (DNN) which involved in many studies in recent years is proposedto classify fertility dataset successfully. For the purpose of comparing theproposed method’s performance, Adaptive Neuro-Fuzzy Inference system (ANFIS) isalso used for the classification problem. The results show that the performanceof the DNN has the best with the average accuracy rate of 90.11%, and theresults of the other ANFIS methods are also satisfactory.
dc.identifier.dergipark484786
dc.identifier.doi10.29137/umagd.484786
dc.identifier.issn1308-5514
dc.identifier.issue1-350
dc.identifier.startpage357
dc.identifier.urihttps://dergipark.org.tr/tr/download/article-file/650637
dc.identifier.urihttps://dergipark.org.tr/tr/pub/umagd/issue/39915/484786
dc.identifier.urihttps://doi.org/10.29137/umagd.484786
dc.identifier.urihttps://hdl.handle.net/20.500.12587/20348
dc.identifier.volume1
dc.language.isoen
dc.publisherKırıkkale Üniversitesi
dc.relation.ispartofUluslararası Mühendislik Araştırma ve Geliştirme Dergisi
dc.relation.publicationcategoryMakale - Ulusal Hakemli Dergi
dc.rightsinfo:eu-repo/semantics/openAccess
dc.snmzKA_20241229
dc.subjectClassification
dc.subjectfertility
dc.subjectstatistical methods
dc.subjectartificial intelligence
dc.subjectdeep learning
dc.subjectANFIS
dc.titleSeminal Quality Prediction Using Deep Learning Based on Artificial Intelligence
dc.typeArticle

Dosyalar