Effects of geometry on brush seal pressure and flow fields - Part II: Backing plate configurations

[ X ]

Tarih

2006

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Asme-Amer Soc Mechanical Eng

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

Brush seal dynamic behavior is strongly related to pressure and flow fields. Developments in brush seal design have led to geometric modifications to control flow; field and consequent brush seal issues including blow-down. hang-up, and pressure stiffening. Some of the geometric enhancements have been found to have common use as backing plate modifications. Over the two decades of brush seal evolution, many backing plate configurations have been suggested in numerous parent disclosures. Even so, literature on the effects of geometric modifications oil pressure and flow fields remains limited. This study numerically investigates brush seal pressure and flow fields for such common conceptual backing plate configurations as single and multiple grooves, with and without by-pass passages. The CFD analysis presented employs a bulk porous medium approach for the bristle pack. The effectiveness of various backing plate configurations outlining important flow features is discussed. Results indicate that backing plate configurations have a decisive role in shaping seal pressure fields. In general, it has been found that all cases having bypass configuration leak more. Moreover the major portion of the seal leakage through fence height is fed front the backing plate cavity. The single backing plate groove forms a constant pressure behind the bristle pack. In contrast, multiple grooves form multiple constant pressure regions.

Açıklama

Dogu, Yahya/0000-0003-0474-2899

Anahtar Kelimeler

Kaynak

Journal Of Turbomachinery-Transactions Of The Asme

WoS Q Değeri

Q3

Scopus Q Değeri

Q2

Cilt

128

Sayı

2

Künye

closedAccess