Data augmentation importance for classification of skin lesions via deep learning

dc.contributor.authorAyan E.
dc.contributor.authorUnver H.M.
dc.date.accessioned2020-06-25T15:17:57Z
dc.date.available2020-06-25T15:17:57Z
dc.date.issued2018
dc.departmentKırıkkale Üniversitesi
dc.description4th Electric Electronics, Computer Science, Biomedical Engineerings' Meeting, EBBT 2018 -- 18 April 2018 through 19 April 2018 -- -- 137380
dc.description.abstractMelanoma is a fatal type of cancer which is mostly curable if detected in early stages. Various machine learning algorithms are used for distinguishing benign lesions from malignant such as deep learning. To obtain successful result from deep learning, large and quality training data set is essential. But, existing data sets maybe insufficient for training a deep learning network. Building a powerful classifier from insufficient data, data augmentation methods are useful. In this article the same network trained with augmented skin lesion images and non- augmented skin lesion images for detecting malignant skin lesions. When compered results, it has been seen that the network using augmented data for training has achieved better results than training with non-augmented data. © 2018 IEEE.en_US
dc.identifier.doi10.1109/EBBT.2018.8391469
dc.identifier.endpage4en_US
dc.identifier.isbn9781538651353
dc.identifier.scopus2-s2.0-85050224605
dc.identifier.scopusqualityN/A
dc.identifier.startpage1en_US
dc.identifier.urihttps://doi.org/10.1109/EBBT.2018.8391469
dc.identifier.urihttps://hdl.handle.net/20.500.12587/2578
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartof2018 Electric Electronics, Computer Science, Biomedical Engineerings' Meeting, EBBT 2018
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectconvolutional neural networksen_US
dc.subjectdata augmentationen_US
dc.subjectdeep learningen_US
dc.subjectmelanomaen_US
dc.subjectskin lesionsen_US
dc.titleData augmentation importance for classification of skin lesions via deep learningen_US
dc.typeConference Object

Dosyalar