Derivation of empirical equations for thermodynamic properties of a ozone safe refrigerant (R404a) using artificial neural network

dc.contributor.authorSozen, Adnan
dc.contributor.authorArcaklioglu, Erol
dc.contributor.authorMenlik, Tayfun
dc.date.accessioned2020-06-25T17:51:17Z
dc.date.available2020-06-25T17:51:17Z
dc.date.issued2010
dc.departmentKırıkkale Üniversitesi
dc.descriptionARCAKLIOGLU, Erol/0000-0001-8073-5207
dc.description.abstractThis study, deals with the potential application of the artificial neural networks (ANNs) to represent PVTx (pressure-specific volume-temperature-vapor quality) data in the range of temperature of 173-498 K and pressure of 10-3600 kPa. Generally, numerical equations of thermodynamic properties are used in the computer simulation analysis instead of analytical differential equations. And also analytical computer codes usually require a large amount of computer power and need a considerable amount of time to give accurate predictions Instead of complex rules and mathematical routines, this study proposes an alternative approach based on ANN to determine the thermodynamic properties of an environmentally friendly refrigerant (R404a) for both saturated liquid-vapor region (wet vapor) and superheated vapor region as numerical equations. Therefore, reducing the risk of experimental uncertainties and also removing the need for complex analytic equations requiring long computational time and effort. R-2 values which are errors known as absolute fraction of variance - in wet vapor region are 0.999401, 0 999982 and 0.999993 for specific volume. enthalpy and entropy for training data, respectively. For testing data, these values are 0.998808. 0.999988, and 0 999993 Similarly, for superheated vapor region, they are 0.999967, 0.999999 and 0.999999 for training data, 0.999978, 0.999997 and 0.999999 for testing data. As seen from the results of mathematical modeling, the calculated thermodynamic properties are obviously within acceptable uncertainties. (C) 2009 Elsevier Ltd. All rights reserved.en_US
dc.identifier.citationclosedAccessen_US
dc.identifier.doi10.1016/j.eswa.2009.06.016
dc.identifier.endpage1168en_US
dc.identifier.issn0957-4174
dc.identifier.issn1873-6793
dc.identifier.issue2en_US
dc.identifier.scopus2-s2.0-71749097370
dc.identifier.scopusqualityQ1
dc.identifier.startpage1158en_US
dc.identifier.urihttps://doi.org/10.1016/j.eswa.2009.06.016
dc.identifier.urihttps://hdl.handle.net/20.500.12587/4780
dc.identifier.volume37en_US
dc.identifier.wosWOS:000272432300031
dc.identifier.wosqualityQ1
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherPergamon-Elsevier Science Ltden_US
dc.relation.ispartofExpert Systems With Applications
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectR404aen_US
dc.subjectThermodynamic propertiesen_US
dc.subjectNeural networksen_US
dc.titleDerivation of empirical equations for thermodynamic properties of a ozone safe refrigerant (R404a) using artificial neural networken_US
dc.typeArticle

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
[ X ]
İsim:
Derivation of empirical equations for thermodynamic properties of a ozone safe refrigerant (R404a) using artificial neural network.pdf
Boyut:
1.93 MB
Biçim:
Adobe Portable Document Format
Açıklama:
Tam Metin/Full Text