Savunma sanayiinde kullanılabilen aısı 304l paslanmaz çeliğinin katı borlama ile üretimi ve karakterizasyonu
Yükleniyor...
Dosyalar
Tarih
2018
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Kırıkkale Üniversitesi
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
Borlanmış paslanmaz çelikler savunma sanayi, biyomedikal uygulamalar, nükleer enerji santralleri, gıda ve kimya endüstrisi olmak üzere çok geniş bir kullanım alanı bulunmaktadır. Aynı şekilde AISI 304L austenitik paslanmaz çeliğin de endüstride kullanım alanı oldukça fazladır. Maliyet açısından da uygun AISI 304L austenitik paslanmaz çeliğe 950 ºC de 2, 4, 6 ve 8 saat katı borlama işlemi uygulanmıştır. Borlanmış çeliklerin yapısal özellikleri taramalı elektron mikroskop (SEM) ve X-ışınları difraktometresi ile mekanik özellikleri ise pin-on-disk aşınma testi, %10 H2SO4 asit çözeltisinde korozyon testi ve Vickers sertlik analizleri yapılarak incelenmiştir. Borlanan numunelerin borür tabakası, alaşım elementlerine bağlı olarak düz ve daha ince bir yapıda olduğu görülmüş ve difüzyon süresi arttıkça bor tabaka kalınlıklarının da arttığı gözlenmiştir. Borür tabaka kalınlığı 20µm-50,6µm ve porozite bant genişliği 13,6µm-24,4µm olarak bulunmuştur. Oluşan FeB, Fe2B, CrB, MnB gibi inter-metalik fazlar XRD analizleri sonucunda belirlenmiştir. Mekanik olarak ise yük miktarı arttıkça aşınma miktarlarının da arttığı, borlama işlemi ile yaklaşık 1,7-10 kat aralığında aşınma direnci sağlandığı ve yüzeyden merkeze doğru sertlik değerlerinin azaldığı belirlenmiştir. Vickers sertlik analizleri sonucunda 1515,1-382,3 HV0,1 sertlik değerleri elde edilmiştir. %10 H2SO4 asit çözeltisinde gerçekleştirilen korozyon testinde ise 3,5-16,9 kat korozyon direnç artışı tespit edilmiştir.
Borided stainless steel has a wide range of applications, such as defense industry, biomedical applications, nuclear energy plants, food industry and chemical industry. Similarly, AISI 304L austenitic stainless steel also has a wide range of applications. AISI 304L austenitic stainless steel, which is also convenient for cost, is borided at 950 ºC for 2, 4, 6 and 8 hours. Structural properties of the borided stainless steel were investigated by using scanning electron microscopy (SEM) and X-ray diffractometer; mechanical properties were investigated by pin on disc wear test, corrosion test with 10% H2SO4 acid solution and Vickers hardness test. It was observed that boride layer of the samples is straight and thinner depending on the alloy elements and the boride layer is getting thicker with the diffusion time increase. Boride layer thickness was found as 20µm-50,6µm and porosity width was found as 13,6µm-24,4µm. Formed inter-metallic phases, such as FeB, Fe2B, CrB, MnB were designated after XRD analysis. It was determined as mechanically that, wear is increased by increasing the load, boriding increase the wear resistence about 1,7-10 times and hardness is reduced from surface to center. As a result of Vickers hardness test 1515,1-382,3 HV0,1 hardness level was observed. Also, 3,5-16,9 times corrosion resistence increase was seen on %10 H2SO4 acid corrosion test.
Borided stainless steel has a wide range of applications, such as defense industry, biomedical applications, nuclear energy plants, food industry and chemical industry. Similarly, AISI 304L austenitic stainless steel also has a wide range of applications. AISI 304L austenitic stainless steel, which is also convenient for cost, is borided at 950 ºC for 2, 4, 6 and 8 hours. Structural properties of the borided stainless steel were investigated by using scanning electron microscopy (SEM) and X-ray diffractometer; mechanical properties were investigated by pin on disc wear test, corrosion test with 10% H2SO4 acid solution and Vickers hardness test. It was observed that boride layer of the samples is straight and thinner depending on the alloy elements and the boride layer is getting thicker with the diffusion time increase. Boride layer thickness was found as 20µm-50,6µm and porosity width was found as 13,6µm-24,4µm. Formed inter-metallic phases, such as FeB, Fe2B, CrB, MnB were designated after XRD analysis. It was determined as mechanically that, wear is increased by increasing the load, boriding increase the wear resistence about 1,7-10 times and hardness is reduced from surface to center. As a result of Vickers hardness test 1515,1-382,3 HV0,1 hardness level was observed. Also, 3,5-16,9 times corrosion resistence increase was seen on %10 H2SO4 acid corrosion test.
Açıklama
Anahtar Kelimeler
, , , , , ,