SOME CHARECTERIZATIONS OF OSCULATI NG CURVES IN THE EUCLIDEAN SPACES

dc.authoridNesovic, Emilija/0000-0002-3124-6308
dc.authoridNesovic, Emilija/0000-0003-3600-0486
dc.contributor.authorIlarslan, Kazim
dc.contributor.authorNesovic, Emilija
dc.date.accessioned2025-01-21T16:44:27Z
dc.date.available2025-01-21T16:44:27Z
dc.date.issued2008
dc.departmentKırıkkale Üniversitesi
dc.description.abstractIn this paper, we give some characterization for a osculating curve in 3-dimensional Euclidean space and we define a osculating curve in the Euclidean 4-space as a curve whose position vector always lies in orthogonal complement B-1(perpendicular to) of its first binormal vector field B-1. In particular, we study the osculating curves in E-4 and characterize such curves in terms of their curvature functions
dc.identifier.endpage939
dc.identifier.issn0420-1213
dc.identifier.issn2391-4661
dc.identifier.issue4
dc.identifier.startpage931
dc.identifier.urihttps://hdl.handle.net/20.500.12587/25461
dc.identifier.volume41
dc.identifier.wosWOS:000210119500020
dc.identifier.wosqualityN/A
dc.indekslendigikaynakWeb of Science
dc.language.isoen
dc.publisherDe Gruyter Poland Sp Zoo
dc.relation.ispartofDemonstratio Mathematica
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_20241229
dc.subjectosculating curve; Frenet equations; planar curve and curvature
dc.titleSOME CHARECTERIZATIONS OF OSCULATI NG CURVES IN THE EUCLIDEAN SPACES
dc.typeArticle

Dosyalar