Performance maps of a diesel engine

Yükleniyor...
Küçük Resim

Tarih

2005

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Elsevier Sci Ltd

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

This paper suggests a mechanism for determining the constant specific-fuel consumption curves of a diesel engine using artificial neural-networks (ANNs). In addition, fuel-air equivalence ratio and exhaust temperature values have been predicted with the ANN. To train the ANN, experimental results have been used, performed for three cooling-water temperatures 70, 80, 90, and 100 C for the engine powers ranging from 1000 to 2300 - for six different powers of 75-450 kW with incremental steps of 75 kW. In the network, the back-propagation learning algorithm with two different variants, single hidden-layer, and logistic sigmoid transfer function have been used. Cooling water-temperature, engine speed and engine power have been used as the input layer, while the exhaust temperature, break specific-fuel consumption (BSFC, g/kWh) and fuel-air equivalence ratio (FAR) have also been used separately as the output layer. It is shown that R-2 values are about 0.99 for the training and test data; RMS values are smaller than 0.03; and mean errors are smaller than 5.5% for the test data. (c) 2004 Elsevier Ltd. All rights reserved.

Açıklama

ARCAKLIOGLU, Erol/0000-0001-8073-5207

Anahtar Kelimeler

artificial neural-network, performance maps, fuel-air equivalence ratio, diesel engine

Kaynak

Applied Energy

WoS Q Değeri

Q2

Scopus Q Değeri

Q1

Cilt

81

Sayı

3

Künye

closedAccess