Effect of MWCNT and GNP nanomaterial concentrations on thermal and electrical behavior of copper-based nanocomposites

[ X ]

Tarih

2024

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Springer Heidelberg

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

In this study, the physical effects of incorporating nano-sized graphene plates (GNP) and multi-walled carbon nanotubes (MWCNT) into a pure copper matrix were examined. Powder metallurgy was used as the composite production method. The microstructures of the nanocomposites were examined, and EDAX elemental and XRD phase analyses were performed. The properties of the electrical resistance and conductivity, thermoelectric properties, and thermal expansion characteristics were determined through various tests. Additionally, the thermal expansion behavior of the composite structures was investigated by measuring the sample sizes before and after the sintering heat treatment. It was observed that as the quantity of nano additives increased, there was a rise in reinforcement agglomeration and porosity. As a result of the experimental study, it was concluded that the addition of MWCNT and GNP nanomaterials to pure copper negatively affected the structural homogeneity of the composite, but positively influenced its electrical and thermal properties.

Açıklama

Anahtar Kelimeler

Nanocomposite; Microstructure; Physical properties; Thermal behavior; Electrical conductivity

Kaynak

Journal of Materials Research

WoS Q Değeri

N/A

Scopus Q Değeri

Q2

Cilt

39

Sayı

23

Künye