Füzyon ateşleme yöntem ve teknikleri
Yükleniyor...
Dosyalar
Tarih
2017
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Kırıkkale Üniversitesi
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
Eylemsiz hapsetme füzyonu (EHF), yakıt kütlesinin eylemsizliğine dayanarak füzyon oluşturacak materyalin hapsedilmesini sağlayan plazmanın bir füzyon yaklaşımıdır. Verimli termonükleer yanma için uygun koşulları elde etmek için, termonükleer yakıt içeren bir kapsül yüksek enerjili bir lazer ile yüksek yoğunluk ve sıcaklık şartlarına sıkıştırılır. EHF uygulaması doğrudan veya dolaylı besleme olarak iki türlü uygulanabilir. Doğrudan besleme sürecinde lazer enerjisi, ters bremsstrahlung veya çeşitli plazma işlemleri vasıtasıyla elektronlara aktarılır. Dolaylı beslemede sürücü enerjisi, önce kapsülü çevreleyen yüksek Z'li holram'da emilir. En iyi holram geometrisi sürücüye bağlıdır. Holram enerji bilimi için ateşleme hedef gereksinimleri, ışıma simetrisi, hidrodinamik kararsızlıklar ve karışım, lazer plazma etkileşimi, sinyal şekillendirmesi ve ateşleme gereksinimleri tümüyle deneylerle tutarlıdır. 1,8 MJ ve 500 TW değerinde NIF lazer tasarımı, temel ateşleme hedeflerindeki belirsizlikleri giderecek şekildedir. Bu tezde dolaylı besleme EHF gereklilikleri incelenmiştir ve bu gereksinimlerin teorik ve deneysel temelleri gözden geçirilmiştir. Bu tartışmanın önemli bölümleri hem doğrudan hem de dolaylı besleme için geçerli olmasına rağmen, asıl odak noktası dolaylı besleme üzerinedir.
Inertial confinement fusion (ICF) is an approach to fusion of the plasma that relies on the inertia of the fuel mass to provide confinement of the material fused. To achieve acceptable conditions for efficient thermonuclear burn, a capsule containing thermonuclear fuel is compressed with a high energy laser to conditions of high density and temperature. ICF application can be applied in two ways as direct or indirect drive. In direct drive process, the laser energy is transferred to the electrons by means of inverse bremsstrahlung or a variety of plasma processes. In indirect drive, the driver energy is absorbed first in a high-Z hohlraum surrounding the capsule. The optimal hohlraum geometry depends on the driver. The ignition target requirements for hohlraum energetics, radiation symmetry, hydrodynamic instabilities and mix, laser plasma interaction, pulse shaping, and ignition requirements are all consistent with experiments. The NIF laser design, at 1.8 MJ and 500 TW, has the margin to cover uncertainties in the baseline ignition targets. In this thesis we analyze the requirements for indirect drive ICF and review the theoretical and experimental basis for these requirements. Although significant parts of the discussion apply to both direct and indirect drive, the principal focus is on indirect drive.
Inertial confinement fusion (ICF) is an approach to fusion of the plasma that relies on the inertia of the fuel mass to provide confinement of the material fused. To achieve acceptable conditions for efficient thermonuclear burn, a capsule containing thermonuclear fuel is compressed with a high energy laser to conditions of high density and temperature. ICF application can be applied in two ways as direct or indirect drive. In direct drive process, the laser energy is transferred to the electrons by means of inverse bremsstrahlung or a variety of plasma processes. In indirect drive, the driver energy is absorbed first in a high-Z hohlraum surrounding the capsule. The optimal hohlraum geometry depends on the driver. The ignition target requirements for hohlraum energetics, radiation symmetry, hydrodynamic instabilities and mix, laser plasma interaction, pulse shaping, and ignition requirements are all consistent with experiments. The NIF laser design, at 1.8 MJ and 500 TW, has the margin to cover uncertainties in the baseline ignition targets. In this thesis we analyze the requirements for indirect drive ICF and review the theoretical and experimental basis for these requirements. Although significant parts of the discussion apply to both direct and indirect drive, the principal focus is on indirect drive.
Açıklama
Anahtar Kelimeler
Fizik ve Fizik Mühendisliği, Physics and Physics Engineering