Finite element simulation of chip flow in metal machining
Yükleniyor...
Tarih
2001
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Pergamon-Elsevier Science Ltd
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
Finite element studies of machining are becoming ever more sophisticated. A basic approach which removes the need, in an elastic-plastic analysis, to follow the development of chip formation from initial contact between work and tool, is the iterative convergence method (ICM). It develops a steady-state chip formation from an initial state of a fully formed chip loaded against a tool. It relies for its accuracy on the assumption that its simplified loading path coincides with the real developed flow at the end of the simulation. This paper examines the robustness of this assumption by studying the sensitivity of the simulation to changes of detail, within the ICM method, of how the flow develops; and it compares the simulated results with experiments. The experiment involves the turning of three free cutting steels, for which experimental flow stress variations with strain, strain rate and temperature, as well as information about the friction interaction between chip and tool, are available. The changes to the simulation method considered here are the structure of the finite element mesh, the measures of judging when the flow is fully developed, how the chip separates from the work at the cutting edge and the friction laws used during the approach to fully developed flow. It is shown that these do affect the outcomes of the simulation but within the ranges studied only to a minor extent and good agreement with experiment is achieved. (C) 2001 Elsevier Science Ltd. All rights reserved.
Açıklama
Childs, Thomas/0000-0002-7695-2775
Anahtar Kelimeler
metal machining, finite elements, iterative convergence method, free-cutting steels
Kaynak
International Journal Of Mechanical Sciences
WoS Q Değeri
Q1
Scopus Q Değeri
Q1
Cilt
43
Sayı
11
Künye
closedAccess