On the generalized Picard and Gauss Weierstrass singular integrals

dc.contributor.authorAral, Ali
dc.date.accessioned2020-06-25T17:43:31Z
dc.date.available2020-06-25T17:43:31Z
dc.date.issued2006
dc.description.abstractIn this paper, we give the generalizations of the Picard and the Gauss Weierstrass singular integral operators which are based on the q-numbers and depend on q-generalization of the Euler gamma integral. Later on, some approximation properties of these two generalized operators are established in L-p (R) and weighted -L-p (R) spaces. We also show that the rates of convergence of these generalized operators to approximating function f in the L-p-norm are at least so faster than that of the classical Picard and Gauss Weierstrass singular integral operators.en_US
dc.identifier.citationclosedAccessen_US
dc.identifier.endpage261en_US
dc.identifier.issn1521-1398
dc.identifier.issue3en_US
dc.identifier.scopus2-s2.0-33748672936
dc.identifier.scopusqualityQ4
dc.identifier.startpage249en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12587/3753
dc.identifier.volume8en_US
dc.identifier.wosWOS:000236418600004
dc.identifier.wosqualityQ4
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherEudoxus Press, Llcen_US
dc.relation.ispartofJournal Of Computational Analysis And Applications
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectq-gamma integralen_US
dc.subjectq-Picard and q-Gauss Weierstrass integralen_US
dc.subjectweighted modulus of continuityen_US
dc.titleOn the generalized Picard and Gauss Weierstrass singular integralsen_US
dc.typeArticle

Dosyalar