QUATERNIONIC BERTRAND CURVES IN EUCLEDIAN 4-SPACE

dc.contributor.authorKecilioglu, Osman
dc.contributor.authorIlarslan, Kazim
dc.date.accessioned2025-01-21T16:43:52Z
dc.date.available2025-01-21T16:43:52Z
dc.date.issued2013
dc.departmentKırıkkale Üniversitesi
dc.description.abstractIn this paper, by using the similar idea of Matsuda and Yorozu [12], we prove that if bitorsion of a quatenionic curve alpha is no vanish, then there is no quaternionic curve in E-4 is a Bertrand curve. Then we define (1, 3) type Bertrand curves for quatenionic curve in Euclidean 4-space. We give some characterizations for a (1, 3) type quaternionic Bertrand curves in Euclidean 4-space by means of the curvature functions of the curve.
dc.identifier.endpage38
dc.identifier.issn1821-1291
dc.identifier.issue3
dc.identifier.startpage27
dc.identifier.urihttps://hdl.handle.net/20.500.12587/25351
dc.identifier.volume5
dc.identifier.wosWOS:000215266200004
dc.identifier.wosqualityN/A
dc.indekslendigikaynakWeb of Science
dc.language.isoen
dc.publisherInt Center Scientific Research & Studies
dc.relation.ispartofBulletin of Mathematical Analysis and Applications
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_20241229
dc.subjectEuclidean 4-space; Quaternionic Frenet frame; (1, 3) type Bertrand curve
dc.titleQUATERNIONIC BERTRAND CURVES IN EUCLEDIAN 4-SPACE
dc.typeArticle

Dosyalar