Late Fusion Based Convolutional Network Model in Detection of Vital Signals with Radar Technology

[ X ]

Tarih

2023

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Kırıkkale Üniversitesi

Erişim Hakkı

info:eu-repo/semantics/openAccess

Özet

In this study, a method based on Convolutional Neural Networks (CNN) and fusion technology was proposed for the classification of vital signals. In order to obtain more information from 1-D radar signals, 2-D data were obtained with the spectrogram technique. An automated classification framework has been implemented by using pre-trained Google Net, VGG-16 and ResNet-50 models. The performance in the test data is increased by applying late fusion process to the highest performing VGG-16 and GoogleNet CNN structures. The performance of the proposed method is 92.54% Accuracy (ACC), 92.41% Sensitivity (SEN), 97.18% Specificity (SPE), 93.54% Precision (PRE), 92.66% F1-Score, and 90.25% Matthews Correlation Constant (MCC). Thanks to the proposed method, radar technology, which is one of the non-destructive detection technologies, comes to the forefront compared to wearable technologies
Bu çalışmada hayati sinyallerin sınıflandırılması için Evrişimsel Sinir Ağları (ESA) ve füzyon teknolojine dayalı bir yöntem önerildi. Tek boyutlu radar sinyallerinden daha fazla bilgi edinmek amacıyla spektrogram tekniği ile 2 boyutlu veriler elde edildi. GoogleNet, VGG-16 ve ResNet-50 ön eğitimli ESA kullanılarak otomatik bir sınıflandırma çerçevesi uygulanmıştır. En yüksek performansa sahip VGG-16 ve GoogleNet ESA yapılarına geç füzyon işlemi uygulanarak test verilerindeki performans artırılmıştır. Önerilen yöntemin performans 92.54% Doğruluk (DOĞ), 92.41% Duyarlılık (DUY), 97.18% Özgüllük (ÖZG), 93.54% Hassasiyet (HAS), 92.66% F1-Skoru ve 90.25% Matthews Korelasyon Sabiti (MKS)’dir. Önerilen yöntem sayesinde tahribatsız algılama teknolojilerinden biri olan radar teknolojisi giyilebilir teknolojilere göre daha ön plana çıkmaktadır.

Açıklama

Anahtar Kelimeler

Radar, Vital Sign, Deep Learning, Convolutional Neural Network, Late Fusion, Radar, Vital Sign, Deep Learning, Convolutional Neural Network, Late Fusion, Electrical Engineering

Kaynak

Uluslararası Mühendislik Araştırma ve Geliştirme Dergisi

WoS Q Değeri

Scopus Q Değeri

Cilt

1

Sayı

1-248

Künye