A new hybrid algorithm with genetic-teaching learning optimization (G-TLBO) technique for optimizing of power flow in wind-thermal power systems

dc.contributor.authorGucyetmez, Mehmet
dc.contributor.authorCam, Ertugrul
dc.date.accessioned2020-06-25T18:16:32Z
dc.date.available2020-06-25T18:16:32Z
dc.date.issued2016
dc.departmentKırıkkale Üniversitesi
dc.descriptionCam, Ertugrul/0000-0001-6491-9225
dc.description.abstractIn this study, a new hybrid genetic teaching learning-based optimization algorithm is proposed for wind-thermal power systems. The proposed algorithm is applied to a 19 bus 7336 MW Turkish-wind-thermal power system under power flow and wind energy generation constraints and three different loading conditions. Also, a conventional genetic algorithm and teaching learning-based (TLBO) algorithms were used to analyse the same power system for the performance comparison. Two performance criteria which are fuel cost and algorithm run time were utilized for comparison. The proposed algorithm combines the specialties of conventional genetic and TLBO algorithms to reach the global and local minimum points effectively. The simulation results show that the proposed algorithm developed in this study performs better than the conventional optimization algorithms with respect to the fuel cost and algorithm run time for wind-thermal power systems.en_US
dc.identifier.citationclosedAccessen_US
dc.identifier.doi10.1007/s00202-015-0357-y
dc.identifier.endpage157en_US
dc.identifier.issn0948-7921
dc.identifier.issn1432-0487
dc.identifier.issue2en_US
dc.identifier.scopus2-s2.0-84949818007
dc.identifier.scopusqualityQ2
dc.identifier.startpage145en_US
dc.identifier.urihttps://doi.org/10.1007/s00202-015-0357-y
dc.identifier.urihttps://hdl.handle.net/20.500.12587/6556
dc.identifier.volume98en_US
dc.identifier.wosWOS:000375923100005
dc.identifier.wosqualityQ4
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherSpringeren_US
dc.relation.ispartofElectrical Engineering
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectA hybrid genetic-teaching learning-based optimization (G-TLBO) algorithmen_US
dc.subjectWind-thermal power systemsen_US
dc.subjectFuel costen_US
dc.subjectAlgorithm run timeen_US
dc.titleA new hybrid algorithm with genetic-teaching learning optimization (G-TLBO) technique for optimizing of power flow in wind-thermal power systemsen_US
dc.typeArticle

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
[ X ]
İsim:
A new hybrid algorithm with genetic-teaching learning optimization (G-TLBO) technique for optimizing of power flow in wind-thermal power systems.pdf
Boyut:
1.27 MB
Biçim:
Adobe Portable Document Format
Açıklama:
Tam Metin/Full Text