Kantrovich Type Generalization of Meyer-Konig and Zeller Operators via Generating Functions

Yükleniyor...
Küçük Resim

Tarih

2013

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Ovidius Univ Press

Erişim Hakkı

info:eu-repo/semantics/openAccess

Özet

In the present paper, we study a Kantorovich type generalization of Meyer-Konig and Zeller type operators via generating functions. Using Korovkin type theorem we first give approximation properties of these operators defined on the space C [0, Lambda], 0 < Lambda < 1. Secondly, we compute the rate of convergence of these operators by means of the modulus of continuity and the elements of the modified Lipschitz class. Finally, we give an r-th order generalization of these operators in the sense of Kirov and Popova and we obtain approximation properties of them.

Açıklama

TASDELEN, Fatma/0000-0002-6291-1649

Anahtar Kelimeler

Positive Linear operators, Kantorovich-type operators, Meyer-Konig and Zeller operators, Modulus of contiunity, Modified Lipschitz class, r-th order generalization

Kaynak

Analele Stiintifice Ale Universitatii Ovidius Constanta-Seria Matematica

WoS Q Değeri

Q4

Scopus Q Değeri

Q3

Cilt

21

Sayı

3

Künye

Olgun,A.,İnce,H. & Tasdelen,F.(2014).Kantrovich Type Generalization of Meyer-Konig and Zeller Operators via Generating Functions. Analele ştiinţifice ale Universităţii "Ovidius" Constanţa. Seria Matematică,21(3) 209-222.