Kantrovich Type Generalization of Meyer-Konig and Zeller Operators via Generating Functions
Yükleniyor...
Tarih
2013
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Ovidius Univ Press
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
In the present paper, we study a Kantorovich type generalization of Meyer-Konig and Zeller type operators via generating functions. Using Korovkin type theorem we first give approximation properties of these operators defined on the space C [0, Lambda], 0 < Lambda < 1. Secondly, we compute the rate of convergence of these operators by means of the modulus of continuity and the elements of the modified Lipschitz class. Finally, we give an r-th order generalization of these operators in the sense of Kirov and Popova and we obtain approximation properties of them.
Açıklama
TASDELEN, Fatma/0000-0002-6291-1649
Anahtar Kelimeler
Positive Linear operators, Kantorovich-type operators, Meyer-Konig and Zeller operators, Modulus of contiunity, Modified Lipschitz class, r-th order generalization
Kaynak
Analele Stiintifice Ale Universitatii Ovidius Constanta-Seria Matematica
WoS Q Değeri
Q4
Scopus Q Değeri
Q3
Cilt
21
Sayı
3
Künye
Olgun,A.,İnce,H. & Tasdelen,F.(2014).Kantrovich Type Generalization of Meyer-Konig and Zeller Operators via Generating Functions. Analele ştiinţifice ale Universităţii "Ovidius" Constanţa. Seria Matematică,21(3) 209-222.