A new approach to thermodynamic analysis of ejector-absorption cycle: artificial neural networks

dc.contributor.authorSözen, A.
dc.contributor.authorArcaklioglu, E.
dc.contributor.authorÖzalp, M.
dc.date.accessioned2020-06-25T17:35:28Z
dc.date.available2020-06-25T17:35:28Z
dc.date.issued2003
dc.departmentKırıkkale Üniversitesi
dc.descriptionARCAKLIOGLU, Erol/0000-0001-8073-5207
dc.description.abstractThermodynamic analysis of absorption thermal systems is too complex because of analytic functions calculating the thermodynamic properties of fluid couples involving the solution of complex differential equations. To simplify this complex process, the use of artificial neural networks (ANNs) has been proposed for the analysis of ejector-absorption refrigeration systems (EARSs). ANNs approach was used to determine the properties of liquid and two phase boiling and condensing of an alternative working fluid couple (methanol/LiBr), which does not cause ozone depletion for EARS. The back-propagation learning algorithm with three different variants and logistic sigmoid transfer function was used in the network. In addition, this paper presents a. comparative performance study of the. EARS using both analytic functions and prediction of ANN for properties of the fluid couple. After training, it was found that average error is less than 1.3% and R-2 values are about 0.9999. Additionally, when the results of analytic equations obtained by using experimental data. and by means of ANN were compared, deviations in coefficient of performance (COP), exergetic coefficient of performance (ECOP) and circulation ratio (F) for all working temperatures were found to be less than 1.8%, 4%, 0.2%, respectively. Deviations for COP, ECOP and F at a generator temperature of similar to90 degreesC for which the COP of the system is maximum are 1%, 2%, 0.1%; respectively, for other working temperatures. As seen from the results obtained, the calculated thermodynamic properties-are obviously within acceptable uncertainties. (C) 2003 Elsevier Science Ltd. All rights reserved.en_US
dc.identifier.citationclosedAccessen_US
dc.identifier.doi10.1016/S1359-4311(03)00034-6
dc.identifier.endpage952en_US
dc.identifier.issn1359-4311
dc.identifier.issue8en_US
dc.identifier.scopus2-s2.0-0037408831
dc.identifier.scopusqualityQ1
dc.identifier.startpage937en_US
dc.identifier.urihttps://doi.org/10.1016/S1359-4311(03)00034-6
dc.identifier.urihttps://hdl.handle.net/20.500.12587/3126
dc.identifier.volume23en_US
dc.identifier.wosWOS:000183082500002
dc.identifier.wosqualityQ2
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherPergamon-Elsevier Science Ltden_US
dc.relation.ispartofApplied Thermal Engineering
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectartificial neural networken_US
dc.subjectabsorption refrigerationen_US
dc.subjectthermodynamic propertiesen_US
dc.subjectmethanol/LiBren_US
dc.subjectCOPen_US
dc.titleA new approach to thermodynamic analysis of ejector-absorption cycle: artificial neural networksen_US
dc.typeArticle

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
[ X ]
İsim:
A new approach to thermodynamic analysis of ejector-absorption cycle artificial neural networks.pdf
Boyut:
540.11 KB
Biçim:
Adobe Portable Document Format
Açıklama:
Tam Metin/Full Text