Clindamycin phosphate and bone morphogenetic protein-7 loaded combined nanoparticle-graft and nanoparticle-film formulations for alveolar bone regeneration – An in vitro and in vivo evaluation

dc.contributor.authorIlhan, Miray
dc.contributor.authorKilicarslan, Muge
dc.contributor.authorAlcigir, Mehmet Eray
dc.contributor.authorBagis, Nilsun
dc.contributor.authorEkim, Okan
dc.contributor.authorOrhan, Kaan
dc.date.accessioned2025-01-21T16:27:07Z
dc.date.available2025-01-21T16:27:07Z
dc.date.issued2023
dc.departmentKırıkkale Üniversitesi
dc.description.abstractCommonly utilized techniques for healing alveolar bone destruction such as the use of growth factors, suffering from short half-life, application difficulties, and the ability to achieve bioactivity only in the presence of high doses of growth factor. The sustained release of growth factors through a scaffold-based delivery system offers a promising and innovative tool in dentistry. Furthermore, it is suggested to guide the host response by using antimicrobials together with growth factors to prevent recovery and achieve ideal regeneration. Herein, the aim was to prepare and an in vitro - in vivo evaluation of bone morphogenetic protein 7 (BMP-7) and clindamycin phosphate (CDP) loaded polymeric nanoparticles, and their loading into the alginate-chitosan polyelectrolyte complex film or alloplastic graft to accelerate hard tissue regeneration. PLGA nanoparticles containing CDP and BMP-7, separately or together, were prepared using the double emulsion solvent evaporation technique. Through in vitro assays, it was revealed that spherical particles were homogeneously distributed in the combination formulations, and sustained release could be achieved for >12 weeks with all formulations. Also, results from the micro-CT and histopathological analyses indicated that CDP and BMP-7 loaded nanoparticle-film formulations were more effective in treatment than the nanoparticle loaded grafts. © 2023 Elsevier B.V.
dc.description.sponsorshipAnkara University, Coordinator of Scientific Research Projects, (17A0234001)
dc.identifier.doi10.1016/j.ijpharm.2023.122826
dc.identifier.issn0378-5173
dc.identifier.pmid36918117
dc.identifier.scopus2-s2.0-85151467240
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org/10.1016/j.ijpharm.2023.122826
dc.identifier.urihttps://hdl.handle.net/20.500.12587/23267
dc.identifier.volume636
dc.indekslendigikaynakScopus
dc.indekslendigikaynakPubMed
dc.language.isoen
dc.publisherElsevier B.V.
dc.relation.ispartofInternational Journal of Pharmaceutics
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_20241229
dc.subjectBone morphogenetic protein; Bone regeneration; Clindamycin phosphate; Graft; Nanoparticle; Polyelectrolyte complex film
dc.titleClindamycin phosphate and bone morphogenetic protein-7 loaded combined nanoparticle-graft and nanoparticle-film formulations for alveolar bone regeneration – An in vitro and in vivo evaluation
dc.typeArticle

Dosyalar