Classification of Breast DCE-MRI Images via Boosting and Deep Learning Based Stacking Ensemble Approach

dc.contributor.authorYurttakal Ahmet Haşim
dc.contributor.authorErbay Hasan
dc.contributor.authorİkizceli Türkan
dc.contributor.authorKaraçavuş Seyhan
dc.contributor.authorBiçer Cenker
dc.date.accessioned2021-01-14T18:11:15Z
dc.date.available2021-01-14T18:11:15Z
dc.date.issued2021
dc.departmentKKÜ
dc.descriptionInternational Conference on Intelligent and Fuzzy Systems, INFUS 2020
dc.description.abstractThe radiomics features are capable of uncovering disease characteristics to provide the right treatment at the right time where the disease is imaged. This is a crucial point for diagnosing breast cancer. Even though deep learning methods, especially, convolutional neural networks (CNNs) have demonstrated better performance in image classification compared to feature-based methods and show promising performance in medical imaging, but hybrid approaches such as ensemble models might increase the rate of correct diagnosis. Herein, an ensemble model, based on both deep learning and gradient boosting, was employed to diagnose breast cancer tumors using MRI images. The model uses handcrafted radiomic features obtained from pixel information breast MRI images. Before training the model these radiomics features applied to factor analysis to optimize the feature set. The accuracy of the model is 94.87% and the AUC value 0.9728. The recall of the model is 1.0 whereas precision is 0.9130. F1-score is 0.9545. © 2021, The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG.en_US
dc.identifier.citationclosedAccessen_US
dc.identifier.doi10.1007/978-3-030-51156-2_131
dc.identifier.endpage1132en_US
dc.identifier.isbn9783030511555
dc.identifier.issn2194-5357
dc.identifier.scopus2-s2.0-85088743084
dc.identifier.scopusqualityN/A
dc.identifier.startpage1125en_US
dc.identifier.urihttps://doi.org/10.1007/978-3-030-51156-2_131
dc.identifier.urihttps://hdl.handle.net/20.500.12587/12926
dc.identifier.volume1197 AISCen_US
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherSpringeren_US
dc.relation.ispartofAdvances in Intelligent Systems and Computing
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectBreast canceren_US
dc.subjectDeep learningen_US
dc.subjectGradient boostingen_US
dc.subjectRadiomicen_US
dc.subjectStacked ensembleen_US
dc.titleClassification of Breast DCE-MRI Images via Boosting and Deep Learning Based Stacking Ensemble Approachen_US
dc.typeConference Object

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
[ X ]
İsim:
Classification of Breast DCE-MRI Images via Boosting and Deep Learning Based Stacking Ensemble Approach.pdf
Boyut:
291.06 KB
Biçim:
Adobe Portable Document Format
Açıklama:
Tam Metin/Full Text