Detection of Web Attacks Using the BERT Model

dc.contributor.authorSeyyar, Yunus Emre
dc.contributor.authorYavuz, Ali Gokhan
dc.contributor.authorUnver, Halil Murat
dc.date.accessioned2025-01-21T16:33:06Z
dc.date.available2025-01-21T16:33:06Z
dc.date.issued2022
dc.departmentKırıkkale Üniversitesi
dc.description30th IEEE Signal Processing and Communications Applications Conference (SIU) -- MAY 15-18, 2022 -- Safranbolu, TURKEY
dc.description.abstractThis paper presents a web intrusion detection system that addresses security threats with the increasing use of web applications in almost all domains, as well as the increase in attacks against web applications. Our web intrusion detection system consists of a model that can distinguish between normal and abnormal URLs. In the URL analysis phase, our model uses the BERT model of Transformers, a prominent natural language processing technique. In the classification phase, we use a CNN model, which is a popular deep learning technique. We utilize the CSIC 2010, FWAF, and HttpParams datasets for training and testing. The experimental results show that our model performs the classification of normal and abnormal requests in 0.4 ms, which is an extremely fast detection time when compared to the reported results in the literature and an accuracy of over 96%.
dc.description.sponsorshipIEEE,IEEE Turkey Sect,Bahcesehir Univ
dc.identifier.doi10.1109/SIU55565.2022.9864721
dc.identifier.isbn978-1-6654-5092-8
dc.identifier.issn2165-0608
dc.identifier.scopus2-s2.0-85138671304
dc.identifier.scopusqualityN/A
dc.identifier.urihttps://doi.org/10.1109/SIU55565.2022.9864721
dc.identifier.urihttps://hdl.handle.net/20.500.12587/23725
dc.identifier.wosWOS:001307163400060
dc.identifier.wosqualityN/A
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isotr
dc.publisherIEEE
dc.relation.ispartof2022 30th Signal Processing and Communications Applications Conference, Siu
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_20241229
dc.subjectweb attack; deep learning; BERT; natural language processing; attack detection system
dc.titleDetection of Web Attacks Using the BERT Model
dc.title.alternativeWeb Saldirilarinin BERT Modeli Kullanilarak Tespit Edilmesi
dc.typeConference Object

Dosyalar