EMBEDDINGS BETWEEN WEIGHTED TANDORI AND CESARO FUNCTION SPACES

[ X ]

Tarih

2021

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Ankara Univ, Fac Sci

Erişim Hakkı

info:eu-repo/semantics/openAccess

Özet

We characterize the weights for which the two-operator inequality
(integral(x)(0) f(t)(p) upsilon(t)(p) dt) (1/p)
(q,u,(0,infinity)) <= c
(t is an element of(x,infinity))ess sup f(t)
(r,w,(0,infinity)) holds for all non-negative measurable functions on (0;1), where 0 < p < q <= infinity and 0 < r < infinity, namely, we.nd the least constants in the embeddings between weighted Tandori and Cesaro function spaces. We use the combination of duality arguments for weighted Lebesgue spaces and weighted Tandori spaces with weighted estimates for the iterated integral operators

Açıklama

Anahtar Kelimeler

Cesaro function spaces; Copson function spaces; Tandori function spaces; embeddings; weighted inequalities; Hardy operator; Copson operator; iterated operators

Kaynak

Communications Faculty of Sciences University of Ankara-Series A1 Mathematics and Statistics

WoS Q Değeri

N/A

Scopus Q Değeri

Cilt

70

Sayı

2

Künye