The Effect of Dictionary Learning Algorithms on Super-resolution Hyperspectral Reconstruction
dc.contributor.author | Simsek, Murat | |
dc.contributor.author | Polat, Ediz | |
dc.date.accessioned | 2020-06-25T18:15:55Z | |
dc.date.available | 2020-06-25T18:15:55Z | |
dc.date.issued | 2015 | |
dc.department | Kırıkkale Üniversitesi | |
dc.description | International Conference Information Communication Automation Technologies (ICAT) -- OCT 29-31, 2015 -- Sarajevo, BOSNIA & HERCEG | |
dc.description.abstract | The spatial resolutions of hyperspectral images are generally lower due to imaging hardware limitations. Super-resolution algorithms can be applied to obtain higher resolutions. Many algorithms exist to achieve super-resolution hyperspectral images from low resolution images acquired in different wavelengths. One of the popular algorithms is sparse representation-based algorithms that employ dictionary learning methods. In this study, a comparative framework is developed to investigate which dictionary learning algorithm leads to better super-resolution images. In order to achieve that, K-SVD and ODL dictionary learning algorithms are employed for comparison. A sparse representation-based algorithm G-SOMP+ is used for hyperspectral super-resolution reconstruction. The experimental results show that ODL algorithm outperforms K-SVD in terms of both reconstruction quality and processing times. | en_US |
dc.description.sponsorship | Univ Sarajevo, Fac Elect Engn Sarajevo, IEEE, IEEE CSS, IEEE Comp Soc, IEEE SMC | en_US |
dc.identifier.citation | closedAccess | en_US |
dc.identifier.isbn | 978-1-4673-8146-8 | |
dc.identifier.scopus | 2-s2.0-84960935756 | |
dc.identifier.scopusquality | N/A | |
dc.identifier.uri | https://hdl.handle.net/20.500.12587/6344 | |
dc.identifier.wos | WOS:000380438700014 | |
dc.identifier.wosquality | N/A | |
dc.indekslendigikaynak | Web of Science | |
dc.indekslendigikaynak | Scopus | |
dc.language.iso | en | |
dc.publisher | Ieee | en_US |
dc.relation.ispartof | 2015 Xxv International Conference On Information, Communication And Automation Technologies (Icat) | |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Hyperspectral | en_US |
dc.subject | super-resolution | en_US |
dc.subject | sparse respresentation | en_US |
dc.subject | dictionary learning | en_US |
dc.title | The Effect of Dictionary Learning Algorithms on Super-resolution Hyperspectral Reconstruction | en_US |
dc.type | Conference Object |
Dosyalar
Orijinal paket
1 - 1 / 1
[ X ]
- İsim:
- The Effect of Dictionary Learning Algorithms on Super-resolution Hyperspectral Reconstruction.pdf
- Boyut:
- 1.72 MB
- Biçim:
- Adobe Portable Document Format
- Açıklama:
- Tam Metin/Full Text