Skin Lesion Segmentation in Dermoscopic Images with Combination of YOLO and GrabCut Algorithm

Yükleniyor...
Küçük Resim

Tarih

2019

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Mdpi

Erişim Hakkı

info:eu-repo/semantics/openAccess

Özet

Skin lesion segmentation has a critical role in the early and accurate diagnosis of skin cancer by computerized systems. However, automatic segmentation of skin lesions in dermoscopic images is a challenging task owing to difficulties including artifacts (hairs, gel bubbles, ruler markers), indistinct boundaries, low contrast and varying sizes and shapes of the lesion images. This paper proposes a novel and effective pipeline for skin lesion segmentation in dermoscopic images combining a deep convolutional neural network named as You Only Look Once (YOLO) and the GrabCut algorithm. This method performs lesion segmentation using a dermoscopic image in four steps: 1. Removal of hairs on the lesion, 2. Detection of the lesion location, 3. Segmentation of the lesion area from the background, 4. Post-processing with morphological operators. The method was evaluated on two publicly well-known datasets, that is the PH2 and the ISBI 2017 (Skin Lesion Analysis Towards Melanoma Detection Challenge Dataset). The proposed pipeline model has achieved a 90% sensitivity rate on the ISBI 2017 dataset, outperforming other deep learning-based methods. The method also obtained close results according to the results obtained from other methods in the literature in terms of metrics of accuracy, specificity, Dice coefficient, and Jaccard index.

Açıklama

Anahtar Kelimeler

skin cancer, skin lesion segmentation, melanoma, convolutional neural networks, Yolo, GrabCut

Kaynak

Diagnostics

WoS Q Değeri

Q1

Scopus Q Değeri

Q2

Cilt

9

Sayı

3

Künye

Ünver HM, Ayan E. Skin Lesion Segmentation in Dermoscopic Images with Combination of YOLO and GrabCut Algorithm. Diagnostics. 2019; 9(3):72.