Functional gold nanorod particles on conducting polymer poly(3-octylthiophene) as non-enzymatic glucose sensor
Yükleniyor...
Tarih
2012
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Elsevier Science Bv
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
The immobilization of surface-functionalized self-assembled monolayer (SAM) gold nanoparticles onto poly(3-octylthiophene) (POT) was achieved by the cooperation of hydrophobic forces. SAMs were prepared by 11-mercaptoundecanoicacid (MUA), 4-mercaptophenyl boronic acid (MPB), and 1-decanethiol (DT) hydrophobic substrates. Nanoparticles-SAM-POT system was characterized by cyclic voltammetry, SEM. EDAX and contact angle measurements. SAMs (MUA) is closely packed providing effective blocking of the underlying platinum electrode and preventing a ferrocyanide molecule from penetrating. However, potential scanning was applied at SAMs (MUA) modified electrode on which electron penetrating holes or defects were occured. Since SAMs (MPB) is poorly packed according to SAMs (MUA), ferrocyanide molecules could penetrate to SAMs (MPB) modified electrode surface. POT-Au-SAM (MPB) electrode was used for glucose determination as potentiometric non-enzymatic glucose sensor. The analytical performance was evaluated and linear calibration graphs were obtained in the concentration range of 5-30 mM glucose including the level of human blood glucose. (C) 2011 Elsevier Ltd. All rights reserved.
Açıklama
Tamer, Ugur/0000-0001-9989-6123
Anahtar Kelimeler
Self-assembled monolayer, Gold nanoparticles, Poly(3-octylthiophene), Non-enzymatic glucose sensor, Boronic acid
Kaynak
Reactive & Functional Polymers
WoS Q Değeri
Q1
Scopus Q Değeri
Q1
Cilt
72
Sayı
2
Künye
closedAccess