Mn3O4/p(DCPD)HIPE nanocomposites as an efficient catalyst for oxidative degradation of phenol

Yükleniyor...
Küçük Resim

Tarih

2020

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

SPRINGER

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

The increase in the amount of wastewater containing organic pollutants in various industrial processes creates serious problems for the environment. Sulfate radical-based advanced oxidation process (AOP) is an effective route to remove pollutants from wastewater. However, designing a new nano-based catalyst to generate sulfate radicals is an important factor for the AOP. For this vision, porous trimanganese tetraoxide-polydicyclopentadiene (Mn3O4/pDCPD) nanocomposite, having an open-cell structure, was successfully designed via high internal phase emulsion (HIPE) and ring-opening metathesis polymerization (ROMP) approaches. The effect of Mn(3)O(4)nanoparticle concentration on the structure was investigated, and the resulting Mn3O4/p(DCPD)HIPE nanocomposites were fully characterized by FT-IR, XRD, FE-SEM, TEM, solid-state(13)C CPMAS NMR, DSC, and TGA analysis. The selected nanocomposite containing 5 wt% of Mn(3)O(4)was used as a model catalyst to mediate the heterogeneous oxidation of phenol in the presence of oxone. It is concluded that Mn3O4/p(DCPD)HIPE nanocomposite is a highly active catalyst to generate sulfate radicals for phenol degradation. Complete removal of 25 mg/L phenol was achieved in 30 min under the conditions of [catalyst] = 0.8 g/L, [oxone] = 2 g/L, andT = 25 degrees C. The phenol degradation followed the pseudo-first-order kinetic model, and the highest kinetic constant of 0.0611 min(-1)was achieved. No significant loss in the activity of the catalyst was determined after four consecutive cycles. Graphical abstract

Açıklama

Anahtar Kelimeler

PolyHIPE, Nanocomposite, Mn3O4, Nanoparticle, Porous polymer, Phenol

Kaynak

JOURNAL OF NANOPARTICLE RESEARCH

WoS Q Değeri

Q3

Scopus Q Değeri

Q2

Cilt

22

Sayı

7

Künye

Bu makale açık erişimli değildir.