Optimization of Production-Distribution Problem in Supply Chain Management under Stochastic and Fuzzy Uncertainties

Yükleniyor...
Küçük Resim

Tarih

2017

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Hindawi Ltd

Erişim Hakkı

info:eu-repo/semantics/openAccess

Özet

Production-Distribution Problem (PDP) in Supply Chain Management (SCM) is an important tactical decision. One of the challenges in this decision is the size and complexity of supply chain system (SCS). On the other side, a tactical operation is a mid-term plan for 6-12 months; therefore, it includes different types of uncertainties, which is the second challenge. In the literature, the uncertain parameters were modeled as stochastic or fuzzy. However, there are a few studies in the literature that handle stochastic and fuzzy uncertainties simultaneously in PDP. In this paper, the modeling and solution approaches of PDP which contain stochastic and fuzzy uncertainties simultaneously are investigated for a SCS that includes multiple suppliers, multiple products, multiple plants, multiple warehouses, multiple retailers, multiple transport paths, and multiple time periods, which, to the best of the author's knowledge, is not handled in the literature. The PDP contains deterministic, fuzzy, fuzzy random, and random fuzzy parameters. To the best of the author's knowledge, there is no study in the literature which considers all of them simultaneously in PDP. An analytic solution approach has been developed by using possibilistic programming and chance-constrained programming approaches. The proposed modeling and solution approaches are implemented in a numerical example. The solution has shown that the proposed approaches successfully handled uncertainties and produce robust solutions for PDP.

Açıklama

Anahtar Kelimeler

Kaynak

Mathematical Problems In Engineering

WoS Q Değeri

Q3

Scopus Q Değeri

Q1

Cilt

2017

Sayı

Künye

Sakalli, Ümit. (2017). Optimization of Production-Distribution Problem in Supply Chain Management under Stochastic and Fuzzy Uncertainties. Mathematical Problems in Engineering. 2017. 1-29.