Ağırlıklandırılmış Evrişimsel Sinir Ağları Topluluğu ile Göğüs Radyografilerinden Kardiyomegali Tespiti
[ X ]
Tarih
2024
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Kırıkkale Üniversitesi
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
Kardiyomegali bir hastalık olmamasına karşın birçok kalp rahatsızlığının belirtisi olarak ortaya çıkabilmektedir. Bu belirtinin erken teşhis edilip altında yatan sebeplerin araştırılması hasta için hayati bir önem arz etmektedir. Kardiyomegali teşhisi için en sık kullanılan yöntemlerden biri göğüs radyografisidir. Derin öğrenme yöntemleri ile radyografik görüntülerin analizi son yıllarda oldukça popüler bir çalışma alanıdır. Özellikle evrişimsel sinir ağları medikal görüntü analizinde başarılı sonuçlar elde etmiştir. Bu çalışmada hekimlerin göğüs radyografilerini analiz ederken ikinci bir görüş alabilecekleri, göğüs radyografilerini normal ve kardiyomegali olmak üzere sınıflandıracak ağırlıklandırılmış evrişimsel sinir ağı (ESA) topluluğu önerilmiştir. Bu bağlamda kardiyomegali tespit etmesi için eğitilen on ESA modeli arasından en başarılı üç model ağırlıklandırılmış topluluk yöntemi için seçilmiştir. Seçilen modellerin ağırlıkları parçacık sürü optimizasyon algoritması kullanılarak belirlenmiştir. Elde edilen ağırlıklar kullanılarak yapılan testler sonucunda önerilen yöntem %89,09 doğruluk %89,09 duyarlılık, %89,30 kesinlik ve %89,08 F1 skor değerleri elde etmiştir.
Kardiyomegali bir hastalık olmamasına karşın birçok kalp rahatsızlığının belirtisi olarak ortaya çıkabilmektedir. Bu belirtinin erken teşhis edilip altında yatan sebeplerin araştırılması hasta için hayati bir önem arz etmektedir. Kardiyomegali teşhisi için en sık kullanılan yöntemlerden biri göğüs radyografisidir. Derin öğrenme yöntemleri ile radyografik görüntülerin analizi son yıllarda oldukça popüler bir çalışma alanıdır. Özellikle evrişimsel sinir ağları medikal görüntü analizinde başarılı sonuçlar elde etmiştir. Bu çalışmada hekimlerin göğüs radyografilerini analiz ederken ikinci bir görüş alabilecekleri, göğüs radyografilerini normal ve kardiyomegali olmak üzere sınıflandıracak ağırlıklandırılmış evrişimsel sinir ağı (ESA) topluluğu önerilmiştir. Bu bağlamda kardiyomegali tespit etmesi için eğitilen on ESA modeli arasından en başarılı üç model ağırlıklandırılmış topluluk yöntemi için seçilmiştir. Seçilen modellerin ağırlıkları parçacık sürü optimizasyon algoritması kullanılarak belirlenmiştir. Elde edilen ağırlıklar kullanılarak yapılan testler sonucunda önerilen yöntem %89,09 doğruluk %89,09 duyarlılık, %89,30 kesinlik ve %89,08 F1 skor değerleri elde etmiştir.
Kardiyomegali bir hastalık olmamasına karşın birçok kalp rahatsızlığının belirtisi olarak ortaya çıkabilmektedir. Bu belirtinin erken teşhis edilip altında yatan sebeplerin araştırılması hasta için hayati bir önem arz etmektedir. Kardiyomegali teşhisi için en sık kullanılan yöntemlerden biri göğüs radyografisidir. Derin öğrenme yöntemleri ile radyografik görüntülerin analizi son yıllarda oldukça popüler bir çalışma alanıdır. Özellikle evrişimsel sinir ağları medikal görüntü analizinde başarılı sonuçlar elde etmiştir. Bu çalışmada hekimlerin göğüs radyografilerini analiz ederken ikinci bir görüş alabilecekleri, göğüs radyografilerini normal ve kardiyomegali olmak üzere sınıflandıracak ağırlıklandırılmış evrişimsel sinir ağı (ESA) topluluğu önerilmiştir. Bu bağlamda kardiyomegali tespit etmesi için eğitilen on ESA modeli arasından en başarılı üç model ağırlıklandırılmış topluluk yöntemi için seçilmiştir. Seçilen modellerin ağırlıkları parçacık sürü optimizasyon algoritması kullanılarak belirlenmiştir. Elde edilen ağırlıklar kullanılarak yapılan testler sonucunda önerilen yöntem %89,09 doğruluk %89,09 duyarlılık, %89,30 kesinlik ve %89,08 F1 skor değerleri elde etmiştir.
Açıklama
Anahtar Kelimeler
Evrişimsel Sinir Ağları, Parçacık Sürü Optimizasyonu, Kardiyomegali, Derin Öğrenme, Evrişimsel Sinir Ağları, Parçacık Sürü Optimizasyonu, Kardiyomegali, Derin Öğrenme, Decision Support and Group Support Systems
Kaynak
Uluslararası Mühendislik Araştırma ve Geliştirme Dergisi
WoS Q Değeri
Scopus Q Değeri
Cilt
1
Sayı
1-178