Ağırlıklandırılmış Evrişimsel Sinir Ağları Topluluğu ile Göğüs Radyografilerinden Kardiyomegali Tespiti

dc.contributor.authorAyan, Enes
dc.date.accessioned2025-01-21T14:20:43Z
dc.date.available2025-01-21T14:20:43Z
dc.date.issued2024
dc.description.abstractKardiyomegali bir hastalık olmamasına karşın birçok kalp rahatsızlığının belirtisi olarak ortaya çıkabilmektedir. Bu belirtinin erken teşhis edilip altında yatan sebeplerin araştırılması hasta için hayati bir önem arz etmektedir. Kardiyomegali teşhisi için en sık kullanılan yöntemlerden biri göğüs radyografisidir. Derin öğrenme yöntemleri ile radyografik görüntülerin analizi son yıllarda oldukça popüler bir çalışma alanıdır. Özellikle evrişimsel sinir ağları medikal görüntü analizinde başarılı sonuçlar elde etmiştir. Bu çalışmada hekimlerin göğüs radyografilerini analiz ederken ikinci bir görüş alabilecekleri, göğüs radyografilerini normal ve kardiyomegali olmak üzere sınıflandıracak ağırlıklandırılmış evrişimsel sinir ağı (ESA) topluluğu önerilmiştir. Bu bağlamda kardiyomegali tespit etmesi için eğitilen on ESA modeli arasından en başarılı üç model ağırlıklandırılmış topluluk yöntemi için seçilmiştir. Seçilen modellerin ağırlıkları parçacık sürü optimizasyon algoritması kullanılarak belirlenmiştir. Elde edilen ağırlıklar kullanılarak yapılan testler sonucunda önerilen yöntem %89,09 doğruluk %89,09 duyarlılık, %89,30 kesinlik ve %89,08 F1 skor değerleri elde etmiştir.
dc.description.abstractKardiyomegali bir hastalık olmamasına karşın birçok kalp rahatsızlığının belirtisi olarak ortaya çıkabilmektedir. Bu belirtinin erken teşhis edilip altında yatan sebeplerin araştırılması hasta için hayati bir önem arz etmektedir. Kardiyomegali teşhisi için en sık kullanılan yöntemlerden biri göğüs radyografisidir. Derin öğrenme yöntemleri ile radyografik görüntülerin analizi son yıllarda oldukça popüler bir çalışma alanıdır. Özellikle evrişimsel sinir ağları medikal görüntü analizinde başarılı sonuçlar elde etmiştir. Bu çalışmada hekimlerin göğüs radyografilerini analiz ederken ikinci bir görüş alabilecekleri, göğüs radyografilerini normal ve kardiyomegali olmak üzere sınıflandıracak ağırlıklandırılmış evrişimsel sinir ağı (ESA) topluluğu önerilmiştir. Bu bağlamda kardiyomegali tespit etmesi için eğitilen on ESA modeli arasından en başarılı üç model ağırlıklandırılmış topluluk yöntemi için seçilmiştir. Seçilen modellerin ağırlıkları parçacık sürü optimizasyon algoritması kullanılarak belirlenmiştir. Elde edilen ağırlıklar kullanılarak yapılan testler sonucunda önerilen yöntem %89,09 doğruluk %89,09 duyarlılık, %89,30 kesinlik ve %89,08 F1 skor değerleri elde etmiştir.
dc.identifier.dergipark1367772
dc.identifier.doi10.29137/umagd.1367772
dc.identifier.issn1308-5514
dc.identifier.issue1-178
dc.identifier.startpage188
dc.identifier.urihttps://dergipark.org.tr/tr/download/article-file/3439752
dc.identifier.urihttps://dergipark.org.tr/tr/pub/umagd/issue/82949/1367772
dc.identifier.urihttps://doi.org/10.29137/umagd.1367772
dc.identifier.urihttps://hdl.handle.net/20.500.12587/19264
dc.identifier.volume1
dc.language.isotr
dc.publisherKırıkkale Üniversitesi
dc.relation.ispartofUluslararası Mühendislik Araştırma ve Geliştirme Dergisi
dc.relation.publicationcategoryMakale - Ulusal Hakemli Dergi
dc.rightsinfo:eu-repo/semantics/openAccess
dc.snmzKA_20241229
dc.subjectEvrişimsel Sinir Ağları
dc.subjectParçacık Sürü Optimizasyonu
dc.subjectKardiyomegali
dc.subjectDerin Öğrenme
dc.subjectEvrişimsel Sinir Ağları
dc.subjectParçacık Sürü Optimizasyonu
dc.subjectKardiyomegali
dc.subjectDerin Öğrenme
dc.subjectDecision Support and Group Support Systems
dc.titleAğırlıklandırılmış Evrişimsel Sinir Ağları Topluluğu ile Göğüs Radyografilerinden Kardiyomegali Tespiti
dc.title.alternativeAğırlıklandırılmış Evrişimsel Sinir Ağları Topluluğu ile Göğüs Radyografilerinden Kardiyomegali Tespiti
dc.typeArticle

Dosyalar