Diagnosis of osteoarthritic changes, loss of cervical lordosis, and disc space narrowing on cervical radiographs with deep learning methods

dc.authoridTokdemir, Gül/0000-0003-2441-3056
dc.authoridMaraş, Yüksel/0000-0001-9319-0955
dc.authoridDuran, Semra/0000-0003-0863-2443
dc.contributor.authorMaraş, Yüksel
dc.contributor.authorTokdemir, Gül
dc.contributor.authorÜreten, Kemal
dc.contributor.authorAtalar, Ebru
dc.contributor.authorDuran, Semra
dc.contributor.authorMaraş, Hakan
dc.date.accessioned2025-01-21T16:34:50Z
dc.date.available2025-01-21T16:34:50Z
dc.date.issued2022
dc.departmentKırıkkale Üniversitesi
dc.description.abstractObjectives: In this study, we aimed to differentiate normal cervical graphs and graphs of diseases that cause mechanical neck pain by using deep convolutional neural networks (DCNN) technology. Materials and methods: In this retrospective study, the convolutional neural networks were used and transfer learning method was applied with the pre-trained VGG-16, VGG-19, Resnet-101, and DenseNet-201 networks. Our data set consisted of 161 normal lateral cervical radiographs and 170 lateral cervical radiographs with osteoarthritis and cervical degenerative disc disease. Results: We compared the performances of the classification models in terms of performance metrics such as accuracy,
dc.identifier.doi10.52312/jdrs.2022.445
dc.identifier.endpage101
dc.identifier.issn2687-4784
dc.identifier.issn2687-4792
dc.identifier.issue1
dc.identifier.pmid35361083
dc.identifier.scopus2-s2.0-85127383643
dc.identifier.scopusqualityQ2
dc.identifier.startpage93
dc.identifier.trdizinid522458
dc.identifier.urihttps://doi.org/10.52312/jdrs.2022.445
dc.identifier.urihttps://search.trdizin.gov.tr/tr/yayin/detay522458
dc.identifier.urihttps://hdl.handle.net/20.500.12587/24002
dc.identifier.volume33
dc.identifier.wosWOS:000778960800011
dc.identifier.wosqualityQ3
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.indekslendigikaynakTR-Dizin
dc.indekslendigikaynakPubMed
dc.language.isoen
dc.publisherTurkish Joint Diseases Foundation
dc.relation.ispartofJoint Diseases and Related Surgery
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/openAccess
dc.snmzKA_20241229
dc.subjectCervical radiography; convolutional neural network; deep; learning; disc space narrowing; osteoarthritic changes; transfer learning
dc.titleDiagnosis of osteoarthritic changes, loss of cervical lordosis, and disc space narrowing on cervical radiographs with deep learning methods
dc.typeArticle

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
Tam Metin/Full Text
Boyut:
1.79 MB
Biçim:
Adobe Portable Document Format