Diagnosis of osteoarthritic changes, loss of cervical lordosis, and disc space narrowing on cervical radiographs with deep learning methods
dc.authorid | Tokdemir, Gül/0000-0003-2441-3056 | |
dc.authorid | Maraş, Yüksel/0000-0001-9319-0955 | |
dc.authorid | Duran, Semra/0000-0003-0863-2443 | |
dc.contributor.author | Maraş, Yüksel | |
dc.contributor.author | Tokdemir, Gül | |
dc.contributor.author | Üreten, Kemal | |
dc.contributor.author | Atalar, Ebru | |
dc.contributor.author | Duran, Semra | |
dc.contributor.author | Maraş, Hakan | |
dc.date.accessioned | 2025-01-21T16:34:50Z | |
dc.date.available | 2025-01-21T16:34:50Z | |
dc.date.issued | 2022 | |
dc.department | Kırıkkale Üniversitesi | |
dc.description.abstract | Objectives: In this study, we aimed to differentiate normal cervical graphs and graphs of diseases that cause mechanical neck pain by using deep convolutional neural networks (DCNN) technology. Materials and methods: In this retrospective study, the convolutional neural networks were used and transfer learning method was applied with the pre-trained VGG-16, VGG-19, Resnet-101, and DenseNet-201 networks. Our data set consisted of 161 normal lateral cervical radiographs and 170 lateral cervical radiographs with osteoarthritis and cervical degenerative disc disease. Results: We compared the performances of the classification models in terms of performance metrics such as accuracy, | |
dc.identifier.doi | 10.52312/jdrs.2022.445 | |
dc.identifier.endpage | 101 | |
dc.identifier.issn | 2687-4784 | |
dc.identifier.issn | 2687-4792 | |
dc.identifier.issue | 1 | |
dc.identifier.pmid | 35361083 | |
dc.identifier.scopus | 2-s2.0-85127383643 | |
dc.identifier.scopusquality | Q2 | |
dc.identifier.startpage | 93 | |
dc.identifier.trdizinid | 522458 | |
dc.identifier.uri | https://doi.org/10.52312/jdrs.2022.445 | |
dc.identifier.uri | https://search.trdizin.gov.tr/tr/yayin/detay522458 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12587/24002 | |
dc.identifier.volume | 33 | |
dc.identifier.wos | WOS:000778960800011 | |
dc.identifier.wosquality | Q3 | |
dc.indekslendigikaynak | Web of Science | |
dc.indekslendigikaynak | Scopus | |
dc.indekslendigikaynak | TR-Dizin | |
dc.indekslendigikaynak | PubMed | |
dc.language.iso | en | |
dc.publisher | Turkish Joint Diseases Foundation | |
dc.relation.ispartof | Joint Diseases and Related Surgery | |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.snmz | KA_20241229 | |
dc.subject | Cervical radiography; convolutional neural network; deep; learning; disc space narrowing; osteoarthritic changes; transfer learning | |
dc.title | Diagnosis of osteoarthritic changes, loss of cervical lordosis, and disc space narrowing on cervical radiographs with deep learning methods | |
dc.type | Article |
Dosyalar
Orijinal paket
1 - 1 / 1